Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemical reaction yield is one of the most important factors for determining reaction conditions. Recently, several machine learning-based prediction models using high-throughput experiment (HTE) data sets were reported for the prediction of reaction yield. However, none of them were at a practical level in terms of predictive ability. In this study, we propose a message passing neural network (MPNN) model for chemical yield prediction, focusing on the Buchwald-Hartwig cross-coupling HTE data set. As an initial atom embedding in MPNN model, we propose to use the Mol2Vec feature vectors pre-trained using a large compound database. Predictive ability of the proposed model was higher than that of previously reported five models for the three out of five data sets. Moreover, visualization of important atoms based on self-attention mechanism was in favor of Mol2Vec as an atom embedding rather than other embeddings including previously employed simple representations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/minf.202100156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!