Background: Studies evaluating mass drug administration (MDA) in malarious areas have shown reductions in malaria immediately following the intervention. However, these effects vary by endemicity and are not sustained. Since the 2013 version of this Cochrane Review on this topic, additional studies have been published.
Objectives: Primary objectives To assess the sustained effect of MDA with antimalarial drugs on: - the reduction in malaria transmission in moderate- to high-transmission settings; - the interruption of transmission in very low- to low-transmission settings. Secondary objective To summarize the risk of drug-associated adverse effects following MDA.
Search Methods: We searched several trial registries, citation databases, conference proceedings, and reference lists for relevant articles up to 11 February 2021. We also communicated with researchers to identify additional published and unpublished studies.
Selection Criteria: Randomized controlled trials (RCTs) and non-randomized studies comparing MDA to no MDA with balanced co-interventions across study arms and at least two geographically distinct sites per study arm.
Data Collection And Analysis: Two review authors independently assessed trials for eligibility and extracted data. We calculated relative risk (RR) and rate ratios with corresponding 95% confidence intervals (CIs) to compare prevalence and incidence, respectively, in MDA compared to no-MDA groups. We stratified analyses by malaria transmission and by malaria species. For cluster-randomized controlled trials (cRCTs), we adjusted standard errors using the intracluster correlation coefficient. We assessed the certainty of the evidence using the GRADE approach. For non-randomized controlled before-and-after (CBA) studies, we summarized the data using difference-in-differences (DiD) analyses.
Main Results: Thirteen studies met our criteria for inclusion. Ten were cRCTs and three were CBAs. Cluster-randomized controlled trials Moderate- to high-endemicity areas (prevalence ≥ 10%) We included data from two studies conducted in The Gambia and Zambia. At one to three months after MDA, the Plasmodium falciparum (hereafter, P falciparum) parasitaemia prevalence estimates may be higher compared to control but the CIs included no effect (RR 1.76, 95% CI 0.58 to 5.36; Zambia study; low-certainty evidence); parasitaemia incidence was probably lower (RR 0.61, 95% CI 0.40 to 0.92; The Gambia study; moderate-certainty evidence); and confirmed malaria illness incidence may be substantially lower, but the CIs included no effect (rate ratio 0.41, 95% CI 0.04 to 4.42; Zambia study; low-certainty evidence). At four to six months after MDA, MDA showed little or no effect on P falciparum parasitaemia prevalence (RR 1.18, 95% CI 0.89 to 1.56; The Gambia study; moderate-certainty evidence) and, no persisting effect was demonstrated with parasitaemia incidence (rate ratio 0.91, 95% CI 0.55 to 1.50; The Gambia study). Very low- to low-endemicity areas (prevalence < 10%) Seven studies from Cambodia, Laos, Myanmar (two studies), Vietnam, Zambia, and Zanzibar evaluated the effects of multiple rounds of MDA on P falciparum. Immediately following MDA (less than one month after MDA), parasitaemia prevalence was reduced (RR 0.12, 95% CI 0.03 to 0.52; one study; low-certainty evidence). At one to three months after MDA, there was a reduction in both parasitaemia incidence (rate ratio 0.37, 95% CI 0.21 to 0.55; 1 study; moderate-certainty evidence) and prevalence (RR 0.25, 95% CI 0.15 to 0.41; 7 studies; low-certainty evidence). For confirmed malaria incidence, absolute rates were low, and it is uncertain whether MDA had an effect on this outcome (rate ratio 0.58, 95% CI 0.12 to 2.73; 2 studies; very low-certainty evidence). For P falciparum prevalence, the relative differences declined over time, from RR 0.63 (95% CI 0.36 to 1.12; 4 studies) at four to six months after MDA, to RR 0.86 (95% CI 0.55 to 1.36; 5 studies) at 7 to 12 months after MDA. Longer-term prevalence estimates showed overall low absolute risks, and relative effect estimates of the effect of MDA on prevalence varied from RR 0.82 (95% CI 0.20 to 3.34) at 13 to 18 months after MDA, to RR 1.25 (95% CI 0.25 to 6.31) at 31 to 36 months after MDA in one study. Five studies from Cambodia, Laos, Myanmar (2 studies), and Vietnam evaluated the effect of MDA on Plasmodium vivax (hereafter, P vivax). One month following MDA, P vivax prevalence was lower (RR 0.18, 95% CI 0.08 to 0.40; 1 study; low-certainty evidence). At one to three months after MDA, there was a reduction in P vivax prevalence (RR 0.15, 95% CI 0.10 to 0.24; 5 studies; low-certainty evidence). The immediate reduction on P vivax prevalence was not sustained over time, from RR 0.78 (95% CI 0.63 to 0.95; 4 studies) at four to six months after MDA, to RR 1.12 (95% CI 0.94 to 1.32; 5 studies) at 7 to 12 months after MDA. One of the studies in Myanmar provided estimates of longer-term effects, where overall absolute risks were low, ranging from RR 0.81 (95% CI 0.44 to 1.48) at 13 to 18 months after MDA, to RR 1.20 (95% CI 0.44 to 3.29) at 31 to 36 months after MDA. Non-randomized studies Three CBA studies were conducted in moderate- to high-transmission areas in Burkina Faso, Kenya, and Nigeria. There was a reduction in P falciparum parasitaemia prevalence in MDA groups compared to control groups during MDA (DiD range: -15.8 to -61.4 percentage points), but the effect varied at one to three months after MDA (DiD range: 14.9 to -41.1 percentage points). AUTHORS' CONCLUSIONS: In moderate- to high-transmission settings, no studies reported important effects on P falciparum parasitaemia prevalence within six months after MDA. In very low- to low-transmission settings, parasitaemia prevalence and incidence were reduced initially for up to three months for both P falciparum and P vivax; longer-term data did not demonstrate an effect after four months, but absolute risks in both intervention and control groups were low. No studies provided evidence of interruption of malaria transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479726 | PMC |
http://dx.doi.org/10.1002/14651858.CD008846.pub3 | DOI Listing |
Foods
January 2025
Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
Given its antioxidant effects and central nervous system benefits, we hypothesized that RJ6601 should improve neurodegeneration in the hippocampus, a region critical for cognition and the maintenance of quality of life (QoL). To assure its safety, a single fixed dose of 2000 mg/kg BW was administered to female Wistar rats (250-450 g, 18 months old) to test the acute toxicity of RJ6601. No mortality and toxicity signs were observed.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Affiliated Hospital of Hebei University, 071000, Baoding City, Hebei Province, China.
Unlabelled: . Renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is the primary malignancy affecting the genitourinary system. It represents the majority of kidney cancer cases and is distinguished by its aggressive nature and high mortality rate.
View Article and Find Full Text PDFInt J Infect Dis
January 2025
Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana. Electronic address:
Objectives: A survey was conducted 10 years after stopping MDA in the Gomoa West District of Ghana to assess the Wuchereria bancrofti prevalence in both human and mosquito populations.
Methods: In seven communities, infection in humans was assessed using the filariasis test strip (FTS). Mosquitoes were collected once a month over six months using pyrethrum spray catches (PSC).
Front Vet Sci
January 2025
YiMin Ecological Agriculture Development Co., Ltd., Hengyang, China.
This study investigated the fructo-oligosaccharides (FOS) on growth performance and meat quality in broilers. Total 160 Xianghuang broilers aged 2 months were randomly assigned into 2 groups, CON (control), FOS (supplemented 0.5% fructo-oligosaccharides in diet).
View Article and Find Full Text PDFPflugers Arch
January 2025
Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, USA.
To examine the effect of DBS of the lateral hypothalamic area (LHA) on age-related memory changes, neuronal firing from CA1, oxidative stress, and the expression of Hsp70, BDNF, and synaptophysin. 72 male rats were randomly allocated into 6 equal groups: a) normal young group (8 W), b) sham young group, c) DBS young group, d) normal old group (24 months), e) sham old group and f) DBS old group. Memory tests (passive avoidance and Y maze), oxidative stress markers (MDA, catalase, and GSH) and expression of Nrf2, HO-1, Hsp70, BDNF, and synaptophysin were measured by the end of the experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!