Platinum (Pt) is the most effective bench-marked catalyst for producing renewable and clean hydrogen energy by electrochemical water splitting. There is demand for high HER catalytic activity to achieve efficient utilization and minimize the loading of Pt in catalysts. In this work, we significantly boost the HER mass activity of Pt nanoparticles in Pt /Co to 8.3 times higher than that of commercial Pt/C by using Co/NC heterojunctions as a heterogeneous version of electron donors. The highly coupled interfaces between Co/NC and Pt metal enrich the electron density of Pt nanoparticles to facilitate the adsorption of H , the dissociation of Pt-H bonds and H release, giving the lowest HER overpotential of 6.9 mV vs. RHE at 10 mA cm in acid among reported HER electrocatalysts. Given the easy scale-up synthesis due to the stabilization of ultrafine Pt nanoparticles by Co/NC solid ligands, Pt /Co can even be a promising substitute for commercial Pt/C for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202111920DOI Listing

Publication Analysis

Top Keywords

ultrafine nanoparticles
8
commercial pt/c
8
heterojunction-based electron
4
electron donators
4
donators stabilize
4
stabilize activate
4
activate ultrafine
4
nanoparticles
4
nanoparticles efficient
4
efficient hydrogen
4

Similar Publications

A molecular toxicological study to explore potential health risks associated with ultrafine particle exposure in cold and humid indoor environments.

Ecotoxicol Environ Saf

January 2025

Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; School of the Built Environment, University of Reading, Reading RG6 6DB, UK. Electronic address:

Environmental pollutants including ultrafine particulate matter (UFPs) and adverse meteorological conditions pose significant public health impacts, particularly affecting respiratory health. This study aims to elucidate the synergistic effects of cold-humid conditions and UFPs exposure on respiratory health, utilizing Carbon Black Nanoparticles (CB-NPs) as surrogates for UFPs. Through comprehensive lung function tests, histopathological examinations, and biomarker analyses, this research focuses on the modulation of oxidative stress signaling pathways and NF-κB activation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Ecole polytechnique - CNRS UMR7654, Palaiseau, Ile-de-France, France; Université Paris Cité - Inserm UMR-S1124, Paris, Ile-de-France, France.

Alzheimer's disease (AD) is the most common dementia in humans that today concerns 50 million individuals worldwide and will affect more than 100 million people in 2050. Except for familial AD cases (<5% of AD patients) for which AD pathology connects to mutations in critical genes involved in the processing of the amyloid precursor protein into neurotoxic Aß peptides, it remains unknown what provokes the overproduction and deposition of Aß peptides in the brain of sporadic AD cases (>95% of AD patients). Some nanosized materials, e.

View Article and Find Full Text PDF

Colloidal ZnAl-Layered Double Hydroxide Nanomaterials for Effective Prevention of SARS-CoV-2.

ACS Appl Bio Mater

December 2024

Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.

SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure.

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF

Regional lymph node (LN) dissection is often used for the treatment of deep LNs in tumour surgery; however, the method is prone to incomplete LN dissection, trauma, complications, and other side effects. LN tracers make it easier to visualise and remove LNs. However, the current common LN tracers only have a single function or have radiation hazards related to their use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!