Major Streptomyces species associated with fissure scab of potato in South Africa including description of Streptomyces solaniscabiei sp. nov.

Antonie Van Leeuwenhoek

Agricultural Research Council-Vegetables, Industrial and Medicinal Plants (ARC-VIMP), Crop Protection Division, Roodeplaat, Pretoria, 0001, South Africa.

Published: December 2021

Streptomyces species are the causal agents of several scab diseases on potato tubers. A new type of scab symptom, caused by Streptomyces species, was observed in South Africa from 2010 onwards. The disease was initially thought to be caused by a single Streptomyces species, however, subsequent isolations from similar symptoms on other potato tubers revealed diversity of the Streptomyces isolates. The objective of this study was to characterise these isolates in order to determine what are the major species involved in the disease. This was done by sequencing and phylogenetic analyses of the 16S rDNA as well as five housekeeping genes, investigation of growth on different culture media, standard phenotypic tests and scanning electron microscopy of culture morphology. The presence of the pathogenicity island (PAI) present in plant pathogenic Streptomyces species was also investigated. The genomes of eight isolates, selected from the three main clades identified, were sequenced and annotated to further clarify species boundaries. Three isolates of each of the three main clades were also inoculated onto susceptible potato cultivars in order to establish the pathogenicity of the species. The results of the phylogenetic and genome analyses revealed that there are three main species involved, namely, Streptomyces werraensis, Streptomyces pseudogriseolus and a novel Streptomyces species that is described here as Streptomyces solaniscabiei sp. nov., with strain FS70 (= PPPPB BD 2226 = LMG 32103) as the type strain. The glasshouse trial results showed that all three of the Streptomyces species are capable of producing fissure scab symptoms. None of the Streptomyces isolates from fissure scab contained the full PAI and the mechanism of disease initiation still needs to be determined. Genomic comparisons also indicated that S. gancidicus Suzuki 1957 (Approved Lists 1980) is a later heterotypic synonym of S. pseudogriseolus Okami and Umezawa 1955 (Approved Lists 1980).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-021-01659-8DOI Listing

Publication Analysis

Top Keywords

streptomyces species
28
fissure scab
12
streptomyces
12
three main
12
species
11
south africa
8
streptomyces solaniscabiei
8
solaniscabiei nov
8
potato tubers
8
streptomyces isolates
8

Similar Publications

Coordinated regulation of two LacI family regulators, GvmR and GvmR2, on guvermectin production in .

Synth Syst Biotechnol

November 2024

Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China.

Guvermectin, a purine nucleoside natural product produced by the genus S, has recently been registered as a new biopesticide to boost rice yield. Despite its economic and agricultural significance, the regulatory mechanisms of guvermectin biosynthesis remain essentially unknown, hindering industrial production and widespread agricultural application. Here, we examined the roles of two LacI family regulators, and , located within and adjacent to the guvermectin biosynthesis cluster, respectively, in guvermectin production in NEAU6.

View Article and Find Full Text PDF

Current Approaches for Genetic Manipulation of spp.-Key Bacteria for Biotechnology and Environment.

BioTech (Basel)

January 2025

Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA.

Organisms from the genus feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although spp.

View Article and Find Full Text PDF

Going to extremes: progress in exploring new environments for novel antibiotics.

NPJ Antimicrob Resist

March 2024

Institute of Life Sciences, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.

The discoveries of penicillin and streptomycin were pivotal for infection control with the knowledge subsequently being used to enable the discovery of many other antibiotics currently used in clinical practice. These valuable compounds are generally derived from mesophilic soil microorganisms, predominantly Streptomyces species. Unfortunately, problems with the replication of results suggested that this discovery strategy was no longer viable, motivating a switch to combinatorial chemistry in conjunction with existing screening programmes to derive new antimicrobials.

View Article and Find Full Text PDF

Lectins are produced in almost all life forms, can interact with targets (glycans) in a cross-kingdom manner and have served as valuable tools for studying glycobiology. Previously, a bacterial lectin, named Streptomyces hemagglutinin (SHA), was found to agglutinate human type B erythrocytes. However, the binding of SHA to mammalian cell types other than human erythrocytes has not been explored.

View Article and Find Full Text PDF

Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae.

Appl Microbiol Biotechnol

January 2025

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!