Background: Malignant tumor essentially implies structural heterogeneity. Analysis of medical imaging can quantify this structural heterogeneity, which can be a new biomarker. This study aimed to evaluate the usefulness of texture analysis of computed tomography (CT) imaging as a biomarker for predicting the therapeutic response of neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer.
Methods: We enrolled 76 patients with rectal cancer who underwent curative surgery after nCRT. Texture analyses (Fractal analysis and Histogram analysis) were applied to contrast-enhanced CT images, and fractal dimension (FD), skewness, and kurtosis of the tumor were calculated. These CT-derived parameters were compared with the therapeutic response and prognosis.
Results: Forty-six of 76 patients were diagnosed as clinical responders after nCRT. Kurtosis was significantly higher in the responders group than in the non-responders group (4.17 ± 4.16 vs. 2.62 ± 3.19, p = 0.04). Nine of 76 patients were diagnosed with pathological complete response (pCR) after surgery. FD of the pCR group was significantly lower than that of the non-pCR group (0.90 ± 0.12 vs. 1.01 ± 0.12, p = 0.009). The area under the receiver-operating characteristics curve of tumor FD for predicting pCR was 0.77, and the optimal cut-off value was 0.84 (accuracy; 93.4%). Furthermore, patients with lower FD tumors tended to show better relapse-free survival and disease-specific survival than those with higher FD tumors (5-year, 80.8 vs. 66.6%, 94.4 vs. 80.2%, respectively), although it was not statistically significant (p = 0.14, 0.11).
Conclusions: CT-derived texture parameters could be potential biomarkers for predicting the therapeutic response of rectal cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10147-021-02027-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!