The current study sought to assess the residual levels of neonicotinoid insecticides (NEO) in organic and conventional green tea leaves produced in Japan. A total of 103 tea leaves (thus, 42 organic and 61 conventional), were sampled from grocery stores in Japan. Concentrations of NEOs in the tea leaves were quantified using LC-MS/MS; and the data was used to estimate maximum daily intakes of NEOs within the Japanese population. Seven native NEO compounds and one NEO metabolite were detected in both organic and conventional tea leaves. Detection frequencies (%Dfs) of NEOs in the tea samples (n = 103) were found in the decreasing order; thiacloprid (84.47 %) > dinotefuran (74.76 %) > imidacloprid (69.90 %) ≈ clothianidin (69.90 %) > dm-acetamiprid (63.11 %) > thiamethoxam (58.25 %) > acetamiprid (4.85 %) > nitenpyram (1.94 %). About 94.20 % of the tea leaves contained two or more NEO compounds simultaneously. The %Dfs of NEOs were relatively lower in organic tea leaves, compared to the conventional tea leaves. Various percentile concentrations of NEOs were far lower in organic tea leaves, compared to the conventional tea leaves. The maximum daily intakes of NEOs through consumption of tea (MDIgt) were also lower for organic tea leaves, compared to the conventional tea samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456056 | PMC |
http://dx.doi.org/10.1016/j.toxrep.2021.09.002 | DOI Listing |
Food Chem X
January 2025
Hainan Institute, Zhejiang University, Sanya 572025, China.
We here analyzed changes in the proportion and content of chiral isomers of linalool and its derivatives in "Hainan dayezhong" throughout its life cycle from tea tree growth and tea manufacturing to brewing. The chiral isomers of aromatic compounds present in fresh tea leaves were found to undergo substantial diurnal and seasonal changes during tea tree growth, and their proportions varied slightly across different leaf positions. The chiral isomer content of linalool and its derivatives was consistently higher in stems than in leaves.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Biochemistry Department, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil; Center for Therapeutic Innovation Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, Brazil. Electronic address:
Ethnopharmacological Relevance: Anxiety and depression are leading causes of disability worldwide, often exacerbated by chronic stress. Schinus terebinthifolia Raddi. has been used in traditional medicine for several purposes.
View Article and Find Full Text PDFFoods
January 2025
Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
The major components of tea leaves and their infusions were analyzed for various types of green tea available in Japan in 2022. Almost all the green teas used were from the first crop, known for their high amino acid content. The amino acids theanine and arginine in green tea have been shown to reduce stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.
View Article and Find Full Text PDFFood Chem
January 2025
Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!