Bioinformatics Analysis and Identification of Genes and Pathways in Ischemic Cardiomyopathy.

Int J Gen Med

Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.

Published: September 2021

Purpose: Ischemic cardiomyopathy (ICM) is considered to be the most common cause of heart failure, with high prevalence and mortality. This study aimed to investigate the different expressed genes (DEGs) and pathways in the pathogenesis of ICM using bioinformatics analysis.

Methods: The control and ICM datasets GSE116250, GSE46224 and GSE5406 were collected from the gene expression omnibus (GEO) database. DEGs were identified using limma package of R software, and co-expressed genes were identified using Venn diagrams. Then, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to explore the biological functions and signaling pathways. Protein-protein interaction (PPI) networks were assembled with Cytoscape software to identify hub genes related to the pathogenesis of ICM. RT-PCR of Heart tissues (n=2 for non-failing controls and n=4 for ischemic cardiomyopathy patients) was used to validate the bioinformatic results.

Results: A total of 844 DEGs were screened from GSE116250, of which 447 were up-regulated genes and 397 were down-regulated genes, respectively. A total of 99 DEGs were singled out from GSE46224, of which 58 were up-regulated genes and 41 were down-regulated genes, respectively. Thirty DEGs were screened from GSE5406, including 10 genes with up-regulated expression and 20 genes with down-regulated expression. Five up-regulated and 3 down-regulated co-expressed DEGs were intersected in three datasets. GO and KEGG pathway analyses revealed that DEGs are mainly enriched in collagen fibril organization, protein digestion and absorption, AGE-RAGE signaling pathway and other related pathways. Collagen alpha-1(III) chain (COL3A1), collagen alpha-2(I) chain (COL1A2) and lumican (LUM) are the three hub genes in all three datasets through PPI network analysis. The expression of 5 DEGs (SERPINA3, FCN3, COL3A1, HBB, MXRA5) in heart tissues by qRT-PCR results was consistent with our GEO analysis, while expression of 3 DEGs (ASPN, LUM, COL1A2) was opposite with GEO analysis.

Conclusion: These findings from this bioinformatics network analysis investigated key hub genes, which contributed to better understanding the mechanism and new therapeutic targets of ICM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464396PMC
http://dx.doi.org/10.2147/IJGM.S329980DOI Listing

Publication Analysis

Top Keywords

genes
13
ischemic cardiomyopathy
12
hub genes
12
degs
9
pathogenesis icm
8
kegg pathway
8
heart tissues
8
degs screened
8
up-regulated genes
8
down-regulated genes
8

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!