To explore a simple and efficient way to fabricate thin film electrodes on flexible substrates is highly desired because of its high promising application in optoelectronics. Transfer printing technique plays a key role in the fabrication of flexible electrodes from conventional substrates to flexible substrates. Unfortunately, a simple, room temperature, environmental-friendly and reusable transfer printing technique still remains challenging. Here we demonstrated a novel water-based wet-transfer printing technique that is simple, room temperature, environmental-friendly and reusable by taking advantage of the adjustment of the intermolecular hydrogen bonding between thin film and substrates. This effective and practical transfer technique may provide an effective route to develop electronic flexible devices with high performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac2ac3 | DOI Listing |
J Nanobiotechnology
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Restorative Dentistry, Recep Tayyip Erdoğan University, Rize, Turkey.
Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).
Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.
Sci Rep
January 2025
Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals.
View Article and Find Full Text PDFPharm Res
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
Purpose: The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups.
View Article and Find Full Text PDFSci Rep
January 2025
University of Connecticut, Storrs, CT, USA.
Printed Circuit Board (PCB) design reconstruction is essential for addressing part obsolescence, intellectual property recovery, compliance, quality assurance, and enhancing national capabilities. Traditional methods for PCB design extraction, both non-geometry-based and geometry-based, have limitations in accuracy, efficiency, and scalability. This paper presents an automated approach, combining image processing and machine learning, to achieve 3D semantic segmentation of PCB X-ray Computed Tomography (X-ray CT) images and subsequent netlist extraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!