Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, we report an enhanced red emission from colloidal silicon nanocrystals (c-Si NCs) solution-processed light-emitting diode. c-Si NCs were synthesized by facile femtosecond laser ablation. Based on the structural characterization and opto-electrics properties analysis, both photoluminescence and electroluminescence arise from the radiative recombination of carriers due to quantum confined effect. The optical power density and highest external quantum efficiency have been obtained to be 0.79 mW cmand ∼6.6%, respectively. These results indicate that Si NCs are very attractive as a potential optical source for future integrated chips.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac2ac1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!