Ferroelectric liquid crystals (FLCs) possess excellent electro-optical properties compared to nematic liquid crystals including lower threshold voltage, faster switching response, good optical contrast and bi-stable switching, memory effect, etc. Due to such characteristic features, FLCs are more promising for next generation high performance photonic applications. Moreover, the synergy of FLCs with nanoscience has clearly shown the enormous possibilities to improve upon their electro-optical properties. Over the past two decades, several investigations of nanomaterial (metal, metal oxide, ferroelectric, insulating, graphene, semiconducting etc.) dispersed FLC nanocomposites have been carried out. Semiconducting nanomaterials (SNMs), exhibiting quantum confinement effect, have been one of the most explored nanomaterials as dopants in FLCs leading to better molecular alignment, enhanced dielectric behavior, pronounced memory effect, power efficient, faster switching response and enhanced photoluminescence. Here, we present a focused review on SNMs-FLCs nanocomposites and propose future work to advance liquid crystal nanoscience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ac2ace | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!