Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest.

eNeuro

Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France.

Published: December 2021

At rest, mammalian brains display remarkable spatiotemporal complexity, evolving through recurrent functional connectivity () states on a slow timescale of the order of tens of seconds. While the phenomenology of the resting state dynamics is valuable in distinguishing healthy and pathologic brains, little is known about its underlying mechanisms. Here, we identify neuronal cascades as a potential mechanism. Using full-brain network modeling, we show that neuronal populations, coupled via a detailed structural connectome, give rise to large-scale cascades of firing rate fluctuations evolving at the same time scale of resting-state networks (). The ignition and subsequent propagation of cascades depend on the brain state and connectivity of each region. The largest cascades produce bursts of blood oxygen level-dependent (BOLD) co-fluctuations at pairs of regions across the brain, which shape the simulated dynamics. We experimentally confirm these theoretical predictions. We demonstrate the existence and stability of intermittent epochs of comprising BOLD co-activation (CA) bursts in mice and human functional magnetic resonance imaging (fMRI). We then provide evidence for the existence and leading role of the neuronal cascades in humans with simultaneous EEG/fMRI recordings. These results show that neuronal cascades are a major determinant of spontaneous fluctuations in brain dynamics at rest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555887PMC
http://dx.doi.org/10.1523/ENEURO.0283-21.2021DOI Listing

Publication Analysis

Top Keywords

neuronal cascades
16
dynamics rest
8
cascades
6
neuronal
5
cascades shape
4
shape whole-brain
4
whole-brain functional
4
dynamics
4
functional dynamics
4
rest rest
4

Similar Publications

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most prevalent type of senile dementia affecting more than 6 million Americans in 2023. Most of these AD cases are sporadic or late-onset AD with unclear etiology. Recent clinical trials on antibody drug clearing Ab plagues in brain show modest benefits of slowing down cognitive decline.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Article Synopsis
  • Asymptomatic Alzheimer's disease (AsymAD) is characterized by the presence of Alzheimer's pathology in individuals who maintain cognitive function, showing lower neuroinflammation compared to symptomatic Alzheimer's disease cases.
  • Research using postmortem brain samples revealed that AsymAD subjects have unique characteristics such as enriched core plaques and reduced tau aggregation, along with increased microglial activity around amyloid plaques.
  • The study suggests that the composition of the plaque microenvironment, particularly enhanced actin-based motility pathways in microglia, may play a key role in the resilience to Alzheimer's pathology and cognitive decline in AsymAD individuals.
View Article and Find Full Text PDF

Background: Multiple AD risk genes are implicated in lipid metabolism, and plasma and brain lipid levels are altered in AD. Astrocytes are enriched in key lipid-related factors and are likely contributors to altered lipid homeostasis in AD. We hypothesize that APP/Aβ-related pathology and neuroimmune factors modulate astrocytic gene transcription that promote maladaptive changes in lipid pathways, including aberrant astrocytic production and release of lipids that could affect Aβ pathology and neuronal deficits.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brown University, Providence, RI, USA.

Background: Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is an important regulator of immunity and, in the brain, is primarily secreted by activated astrocytes and heralds a neurotoxic inflammatory state. While it has been well known as a high-profile biomarker for Alzheimer's disease (AD) and inflammatory brain conditions (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!