DNA damage in cetaceans: A mini review.

Mutat Res Genet Toxicol Environ Mutagen

Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bldg 37, Rm 4060, NIH, 37 Convent Dr. MSC-4255, Bethesda, MD, 20892-4255, United States. Electronic address:

Published: October 2021

DNA damage has long been known to play an essential role in tumorigenesis induced by chemical carcinogen exposure. The preponderance of data generated during the past approximately 50 years of cancer research indicates that DNA damage and DNA adduct formation are necessary but not sufficient for tumor induction by chemical carcinogenesis. This is true for all of the species studied, including experimental animals, some animals in the wild, and humans. Cetaceans, which include whales, dolphins and porpoises, are a challenge to evaluate because tissues are difficult to obtain, and cancer rates, with a single exception, are low (0.7-2.0 %). However, both non-specific (chromosomal aberrations, DNA strand breaks, 8-hydroxy-2-deoxyguanosine, mitochondrial DNA damage), and chemical-specific (aromatic DNA adducts, and carcinogenic polycyclic aromatic hydrocarbon [PAH]-DNA adducts) DNA damage have been found in cetaceans. For some types of DNA damage, cetaceans may carry a burden similar to that seen in many other species, including humans, but linking DNA damage to cancer rates in cetaceans has been largely impossible. The one exception is a population of beluga whales in the St. Lawrence Estuary (SLE) in Quebec, Canada, where correlations have been found between long-term PAH exposure, PAH-DNA adducts in small intestinal crypt cells, and a high rate (7%) of gastrointestinal cancers. Taken together, the current literature demonstrates that cetaceans may carry a burden of many types of DNA damage and, given the example of the SLE beluga, cetaceans may sustain a potential susceptibility to pollution-induced tumorigenesis. Knowledge of DNA damage and cancer rates in whales is critically important for understanding and predicting the health of marine life, human life, and the aquatic environment of our planet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2021.503392DOI Listing

Publication Analysis

Top Keywords

dna damage
36
dna
12
damage cetaceans
12
cancer rates
12
damage
8
types dna
8
cetaceans carry
8
carry burden
8
damage cancer
8
cetaceans
7

Similar Publications

Cytotoxicity and genotoxicity of orthodontic bands after aging: an in-vitro study.

BMC Oral Health

January 2025

Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-3119, Shiraz, Iran.

Background: This investigation sought to evaluate cytotoxic and genotoxic effects of two different types of orthodontic bands after aging in acidic and neutral artificial saliva using human gingival fibroblast-like (HGF1-PI 1) cell lines.

Methods: Two commercial brands of orthodontic molar bands (American orthodontic (AO) and 3 S-dental bands), commonly used by orthodontists, were tested. These bands were divided into four groups to examine the effects of aging following thermocycling, and pH variations (pH = 4.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.

View Article and Find Full Text PDF

Novel radiation sensitizers, including inhibitors targeting DNA damage response, have been developed to enhance the efficacy of anticancer treatments that induce DNA damage in cancer cells. Peposertib, a potent, selective, and orally administered inhibitor of DNA-dependent protein kinase, impedes the nonhomologous end-joining mechanism for DNA double-strand break (DSB) repair. We investigated radioimmunotherapy alone or with peposertib in preclinical models of renal cell carcinoma (RCC) or prostate cancer.

View Article and Find Full Text PDF

Nucleolin-targeted silicon-based nanoparticles for enhanced chemo-sonodynamic therapy of diffuse large B-cell lymphoma.

Int J Pharm

January 2025

Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China. Electronic address:

The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!