Glioblastoma is the most common primary brain malignancy and carries with it a poor prognosis. New agents are urgently needed, however nearly all Phase III trials of GBM patients of the past 25 years have failed to demonstrate improvement in outcomes. In 2019, the National Cancer Institute Clinical Trials and Translational Research Advisory Committee (CTAC) Glioblastoma Working Group (GBM WG) identified 5 broad areas of research thought to be important in the development of new herapeutics for GBM. Among those was optimizing radioresponse for GBM in situ. One such strategy to increase radiation efficacy is the addition of a radiosensitizer to improve the therapeutic ratio by enhancing tumor sensitivity while ideally having minimal to no effect on normal tissue. Historically the majority of trials using radiosensitizers have been unsuccessful, but they provide important guidance in what is required to develop agents more efficiently. Improved target selection is essential for a drug to provide maximal benefit, and once that target is identified it must be validated through pre-clinical studies. Careful selection of appropriate in vitro and in vivo models to demonstrate increased radiosensitivity and suitable bioavailability are then necessary to prove that a drug warrants advancement to clinical investigation. Once investigational agents are validated pre-clinically, patient trials require consistency both in terms of planning study design as well as reporting efficacy and toxicity in order to assess the potential benefit of the drug. Through this paper we hope to outline strategies for developing effective radiosensitizers against GBM using as models the examples of XPO1 inhibitors and HDAC inhibitors developed from our own lab.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8480070 | PMC |
http://dx.doi.org/10.1186/s13014-021-01918-y | DOI Listing |
Discov Oncol
January 2025
Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.
CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.
View Article and Find Full Text PDFSmall
January 2025
Cancer Hospital of Dalian University of Technology, Dalian University of Technology, Shenyang, 110042, China.
Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Next Generation Information Center, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea.
Gastric cancer is a leading cause of cancer-related mortality, particularly in East Asia, with a notable burden in Republic of Korea. This study aimed to construct and develop machine learning models for the prediction of gastric cancer mortality and the identification of risk factors. All data were acquired from the Korean Clinical Data Utilization for Research Excellence by multiple medical centers in South Korea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!