Life cycle assessment of the food waste management with a focus on the collection bag.

Waste Manag Res

Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy.

Published: October 2021

AI Article Synopsis

Article Abstract

The organic fraction (mainly food waste) is typically the most abundant of the separately collected waste streams. The research aims at investigating the influence of different types of collection bag on the environmental performances of the food waste management chain in Italy. A comparative life cycle assessment (LCA) between two alternative systems based on paper or bioplastic collection bags was carried out. It included the collection bags manufacturing and distribution, their use at the household, the transportation of collected food waste and its subsequent anaerobic digestion, including the valorisation of useful outputs and the management of residues. The two systems were modelled mainly with primary data related to the current management system and to tests performed on bags. The LCA was performed with two different modelling approaches applied in the environmental product declaration (EPD) system and in the product environmental footprint (PEF) studies, respectively. In the scenario representing the average conditions, higher environmental impacts are shown by the use of bioplastic bags compared to paper ones with the EPD approach (+257%/+576%). With the PEF approach, the differences between the two systems are lower (-55%/+133%). Moreover, paper bags could allow for further impact reductions assuming a decrease of the food waste collection frequency, allowed by higher weight losses and a lower generation of leachate and odour during the household storage.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X211050181DOI Listing

Publication Analysis

Top Keywords

food waste
20
life cycle
8
cycle assessment
8
waste management
8
collection bag
8
collection bags
8
waste
6
food
5
collection
5
bags
5

Similar Publications

Similarities and differences in waste composition over time and space determined by multivariate distance analyses.

PLoS One

January 2025

Waste Data and Analysis Center, Department of Technology & Society, Stony Brook University, Stony Brook, New York, United States of America.

The composition of solid waste affects technology choices and policy decisions regarding its management. Analyses of waste composition studies are almost always made on a parameter by parameter basis. Multivariate distance techniques can create wholisitic determinations of similarities and differences and were applied here to enhance a series of waste composition comparisons.

View Article and Find Full Text PDF

Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.

View Article and Find Full Text PDF

How does meditation relate to quality of life, positive lifestyle habits and carbon footprint?

Heliyon

January 2025

Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, 03, Sri Lanka.

There is increasing scientific interest in the potential links between meditation practice and pro-environmental behaviours. The present research investigates relationships between meditation experience (temporal variables of meditation, five facets of trait mindfulness), positive lifestyle habits (PLH), quality of life (QoL) and per-head carbon footprint (CF) among 25 skilled meditators. Self-reported validated questionnaires were given to a group of native speakers of Sri Lanka to collect data on meditation experience, PLH, and perceived QoL.

View Article and Find Full Text PDF

Insights into bacterial cellulose for adsorption and sustained-release mechanism of flavors.

Food Chem X

January 2025

Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!