Microglia are the resident macrophages of the central nervous system (CNS). They are derived from the erythromyeloid progenitors in the embryonic yolk sac, and they are maintained postnatally by limited self-renewal and longevity. As the most abundant immune cells in the CNS, they play critical roles in homeostasis and various CNS pathologies, including tumor, stroke, and neurodegenerative disease. For instance, in gliomas, up to more than 30% of cells in the tumor microenvironment can be microglia and tumor-associated macrophages. These cells are typically coopted by tumor cells to create a pro-tumorigenic microenvironment. The transcriptional regulation of the development and function of microglia in health and disease is not well understood. Transcription factors are master regulators of cell fates and functions and activate target genes that execute a genetic program typically initiated by external stimuli. Several transcription factors, not necessarily specific to microglia, have been shown to play roles in the development, function, and activation state of microglia. In this review, we summarize our current understanding of the roles of transcription factors in the functions of microglia in normal CNS homeostasis and in gliomas. A thorough understanding of the transcription factors and their target genes that mediate and regulate the functions of microglia in gliomas may help identify new targets for immune therapies. These stroma-directed therapies may be combined with tumor cell-directed therapies for more effective treatment of these diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2021.06.107 | DOI Listing |
Virol J
January 2025
Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Acute kidney injury (AKI) is a condition that can result in changes in both urine production and creatinine levels in the bloodstream, complicating the treatment process and worsening outcomes for many hospitalized patients. BK polyomavirus (BKPyV), a member of the Polyomaviridae family, is prevalent in the population and remains latent in the body. It can reactivate in individuals with a compromised immune system, particularly post-kidney transplant, and can activate various transcription factors and immune mediators.
View Article and Find Full Text PDFVirology
December 2024
Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. Electronic address:
Decades of research have defined the function of interferon regulatory factors (IRFs) in the antiviral immune response. Interferon regulatory factor-1 (IRF-1) is the founding member of the IRF family, with recognized antiviral effects across diverse virus infections. While most antiviral activities of IRF-1 were defined in vitro, fewer studies examined the role of IRF-1 during viral infection of an intact host.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!