Redox-dependent biotransformation of sulfonamide antibiotics exceeds sorption and mineralization: Evidence from incubation of sediments from a reclaimed water-affected river.

Water Res

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China. Electronic address:

Published: October 2021

Trace levels of sulfonamide antibiotics are ubiquitous in reclaimed water, yet environmental pathways to completely remove those chemicals are not well understood when such water is used to restore flows in dried rivers. This study investigated sulfonamide sorption-desorption, biodegradation, and mineralization processes with seven sediments from a reclaimed water-dominant river. Batch experiments were conducted under oxic and anoxic (nitrate-reducing) conditions, and each removal process of sulfamethazine, sulfadiazine, and sulfamethoxazole (SMX) was evaluated individually at environmentally relevant concentrations (≤ 10 μg/L). Over 28 days, 44 ± 32% of sulfonamides were biodegraded, while the full mineralization to carbon dioxide was < 1%. Around 5% of sulfonamides were removed via sediment sorption, with a positive correlation with sediment organic contents. Detailed investigation of SMX biodegradation revealed that although its transformation appeared to be faster in anoxic than oxic tests by day 2, it reversed over 28 days with a longer apparent half-life in anoxic tests (69 ± 25 days) than that in oxic tests (12 ± 11 days). This is attributed to the formation of reversible metabolites at denitrifying conditions, such as DesAmino-SMX of which the production was affected by nitrite concentrations. Despite measurements of three frequently reported metabolites, > 70% biotransformation products remained unknown in this study. The findings highlight the persistency of sulfonamides and their derivatives, with research needed to further elucidate degradation mechanisms and to perform risk assessment of reclaimed water reuse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117616DOI Listing

Publication Analysis

Top Keywords

sulfonamide antibiotics
8
sediments reclaimed
8
reclaimed water
8
oxic tests
8
tests days
8
redox-dependent biotransformation
4
biotransformation sulfonamide
4
antibiotics exceeds
4
exceeds sorption
4
sorption mineralization
4

Similar Publications

Background: Antibiomania is the manifestation of manic symptoms secondary to taking an antibiotic, which is a rare side effect. In these cases, the antibiotics most often incriminated are macrolides and quinolones, but to our knowledge, there are no published cases of antibiomania secondary to cotrimoxazole. Furthermore, we also provide an update of pharmacovigilance data concerning antibiomania through a search of the World Health Organization (WHO) database.

View Article and Find Full Text PDF

Safety and effectiveness of dual therapy for Helicobacter pylori infection and the effect on the glycated hemoglobin level in type 2 diabetes.

Sci Rep

January 2025

Department of Gastroenterology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 68 Gehu Middle Road, Wujing District, Changzhou, 213000, Jiangsu, China.

Patients with diabetes have a high risk of failure of H. pylori eradication therapy. The present study aims to evaluate the efficacy and safety of vonoprazan-amoxicillin (VA) dual therapy for the treatment of H.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

The prevalence of nanoplastics (NPs) and sulfonamide antibiotics (SAs) in the aquatic environment is potentially harmful to the environment, and these pollutants are often present in the environment in the form of composite ones, thereby introducing more complex effects and hazards to the environment. Therefore, it is crucial to investigate the toxic effects of the individual target pollutants and their mixtures. In this study, we used Scenedesmus obliquus as the test organisms, two types of NPs: polystyrene (PS) and amine-modified (NH-PS), four SAs: sulfapyridine (SPY), sulfamethazine (SMR), sulfamethoxypyridazine (SMP), and sulfamethoxazole (SMZ), and their eight binary mixtures were examined.

View Article and Find Full Text PDF

The widespread existence of sulfapyridine (SPD, a typical representative of sulfonamide) in natural environment has raised increasing interest because its potential to cause antibiotic-resistant genes. In this work, the degradation of SPD during heat-activated peroxodisulfate (heat/PDS) oxidation process was explored. The pseudo-first-order rate constant () of SPD was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!