Orexin has been implicated in comorbid diseases of depression, making it a promising target for anti-depression treatment. Although orexin neurons exhibit abnormal activity in depression, the neurocircuit mechanism of orexin remains unclear. As one of the important downstream factors of orexin neurons, the ventral tegmental area (VTA) is considered crucial to the mechanism of depression. However, the role of VTA orexinergic afferents in depression remains unclear. In this study, we applied a combination of opto/chemogenetic and neuropharmacology methods to investigate whether the VTA orexinergic afferents participate in the pathogenesis of depression in a chronic unpredictable mild stress (CUMS) mouse model. We found that c-Fos expression in these VTA-projecting orexin neurons specifically decreased in CUMS-treated mice. Optogenetic and chemogenetic activation of orexin terminals in the VTA significantly reversed depressive behavior. Microinjection of orexin-A, but not orexin-B, into the VTA significantly improved depressive-like behavior. Our study provided direct evidence that the VTA orexinergic afferents participate in the mechanism of depression, and the orexin-1 receptor plays a major role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.09.062 | DOI Listing |
Biochem Biophys Res Commun
November 2024
Department of Medical Psychology, Airforce Military Medical University, Xi'an, Shaanxi, China. Electronic address:
The orexin system participates in the regulation of depression; however, its effects show significant heterogeneity, indicating the involvement of complex downstream neural circuit mechanisms. The lateral septum (LS), located downstream of the orexin system, contributes to depression. However, the effects and mechanisms underlying the orexin-mediated modulation of the LS in patients with depression remain unclear.
View Article and Find Full Text PDFFront Neurosci
June 2022
Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
Biochem Biophys Res Commun
November 2021
Department of Medical Psychology, The Fourth Military Medical University, Xi'an, Shaanxi, China. Electronic address:
Orexin has been implicated in comorbid diseases of depression, making it a promising target for anti-depression treatment. Although orexin neurons exhibit abnormal activity in depression, the neurocircuit mechanism of orexin remains unclear. As one of the important downstream factors of orexin neurons, the ventral tegmental area (VTA) is considered crucial to the mechanism of depression.
View Article and Find Full Text PDFFront Integr Neurosci
June 2021
Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States.
In this review, we highlight evidence that supports a role for the paraventricular nucleus of the thalamus (PVT) in motivated behavior. We include a neuroanatomical and neurochemical overview, outlining what is known of the cellular makeup of the region and its most prominent afferent and efferent connections. We discuss how these connections and distinctions across the anterior-posterior axis correspond to the perceived function of the PVT.
View Article and Find Full Text PDFRev Neurol
December 2020
Universidad de Granada, Granada, España.
Introduction: The orexinergic system is one of the chemical mediators that modulate the gut-brain axis, given the involvement of hypothalamic orexin A (OXA) in gastrointestinal motility and secretion, and the presence of OXA in enteroendocrine cells of the intestinal mucosa and in primary afferent neurons of the mesenteric plexus, permitting its participation in gut-brain signaling.
Aim: The source of OXA and the signal(s) triggering its peripheral release are not fully understood, and it is not known whether it acts on orexigenic receptors in peripheral tissues to meet physiological or pathological demands. The aim of this review is to address these questions in the light of new data indicating that OXA may have functions in the gut-brain axis that go beyond its participation in energy homeostasis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!