Air purification through fiber-based filters has become a fundamental requirement for air contamination control. However, conventional filters depend on polymeric fibrous filters with adequate particulate matter removal ability but fewer degassing and biocidal effects. This study presents the photocatalytic volatile organic compound (VOC) oxidation and antimicrobial properties of zinc oxide (ZnO) nano-spines sprouted activated-carbon nanofibers (I@ZnO/ACNFs) and their potential for air contamination control and infection prevention. By developing a novel technique that can induce phase separation of inorganic salts during electrospinning, nanofibers with zinc (Zn) components concentrated on the surface could be synthesized. I@ZnO/ACNFs exhibit a surface densely covered with high aspect-ratio ZnO nano-spines with significant lethality to airborne pathogens and enhanced photocatalytic activity toward VOCs. Moreover, excellent adhesion stability of ZnO to ACNFs under rapid airflow was observed in I@ZnO/ACNFs. In combination with intriguing antimicrobial activity and strong VOC removal capability derived from their unique morphology, novel I@ZnO/ACNFs hold potential for airborne microbial disinfection, effective and sustainable VOC purification, and the design of photomicrobicidal and photocatalytic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127262 | DOI Listing |
J Hazard Mater
February 2022
School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea. Electronic address:
Air purification through fiber-based filters has become a fundamental requirement for air contamination control. However, conventional filters depend on polymeric fibrous filters with adequate particulate matter removal ability but fewer degassing and biocidal effects. This study presents the photocatalytic volatile organic compound (VOC) oxidation and antimicrobial properties of zinc oxide (ZnO) nano-spines sprouted activated-carbon nanofibers (I@ZnO/ACNFs) and their potential for air contamination control and infection prevention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!