A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mudflat geomorphology determines invasive macroalgal effect on invertebrate prey and shorebird predators. | LitMetric

Mudflat geomorphology determines invasive macroalgal effect on invertebrate prey and shorebird predators.

Ecology

Department of Environmental Science, University of Virginia, Charlottesville, Virginia, USA.

Published: December 2021

Impacts of invasive species are often context specific due to varying ecological interactions. Physical structure of environments hosting invaders is also potentially important but has received limited attention. An invasive macroalga, Agarophyton vermiculophyllum, has spread across the northern hemisphere with mixed positive, neutral and negative effects on resident species. Agarophyton colonizes mudflats that vary in topography due to interactions of sediments with hydrodynamic forces. We tested the hypothesis that mudflat geomorphology moderates the effect of Agarophyton on shorebirds and invertebrates. We surveyed 30 mudflats in the Virginia Coast Reserve quantifying elevation and topography. Invertebrate and bird abundances were also quantified. Mudflat geomorphology ranged from smooth to hummocky and was correlated with invertebrate and shorebird abundance and interactions based on piecewise structural equation models. After accounting for geomorphology, Agarophyton had little effect on invertebrate abundance. Shorebird numbers were differentially influenced by mudflat topography, with positive correlations to invertebrates (worms) on smooth mudflats, and to macroalgae on hummocky mudflats. These differences are likely to be due to sediment properties in interaction with structural changes induced by Agarophyton mats that affect prey accessibility for birds. Even on apparently simple mudflats, geomorphic structure emerged as important, modifying invasive species impacts and differentially influencing consumers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.3540DOI Listing

Publication Analysis

Top Keywords

mudflat geomorphology
12
invasive species
8
agarophyton
5
mudflats
5
mudflat
4
geomorphology determines
4
invasive
4
determines invasive
4
invasive macroalgal
4
invertebrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!