Osteogenesis imperfecta (OI) type XIV is a rare recessive bone disorder characterized by variable degree of severity associated to osteopenia. It is caused by mutations in TMEM38B encoding for the trimeric intracellular cation channel TRIC-B, specific for potassium and ubiquitously present in the endoplasmic reticulum (ER) membrane. OI type XIV molecular basis is largely unknown and, due to the rarity of the disease, the availability of patients' osteoblasts is challenging. Thus, CRISPR/Cas9 was used to knock out (KO) TMEM38B in the human Foetal Osteoblast hFOB 1.19 to obtain an OI type XIV model. CRISPR/Cas9 is a powerful technology to generate in vitro and in vivo models for heritable disorders. Its limited cost and ease of use make this technique widely applicable in most laboratories. Nevertheless, to fully take advantage of this approach, it is important to be aware of its strengths and limitations. Three gRNAs were used and several KO clones lacking the expression of TRIC-B were obtained. Few clones were validated as good models for the disease since they reproduce the altered ER calcium flux, collagen I structure and impaired secretion and osteoblastic markers expression detected in patients' cells. Impaired proliferation and mineralization in KO clones unveiled the relevance of TRIC-B in osteoblasts functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478202PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257254PLOS

Publication Analysis

Top Keywords

type xiv
16
tmem38b human
8
human foetal
8
hfob 119
8
knocking tmem38b
4
foetal osteoblasts
4
osteoblasts hfob
4
119 crispr/cas9
4
crispr/cas9 model
4
model recessive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!