Meningioma is the second most common type of intracranial brain tumor. Immunohistochemical techniques have shown prodigious results in the role of epidermal growth factor receptor variant III (EGFR vIII) in glioma and other cancers. However, the role of EGFR vIII in meningioma is still in question. This study attempt the confer searches for the position attained by EGFR vIII in progression and expression of meningioma. Immunohistochemistry technique showed that EGFR vIII is highly expressed in benign tumors as compared to the atypical meningioma with a highly significant p-value (p<0.05). Further analysis by flow cytometry results supported these findings thus presented high intensity of EGFR vIII in low grades of meningioma. The study revealed that the significant Ki 67 values, to predictor marker for survival and prognosis of the patients. Higher expression of EGFR vIII in low grades meningiomas as compared to high-grade tumors indicate towards its oncogenic properties. To our knowledge, limited studies reported in literature expressing the EGFR vIII in meningioma tumors. Hence, Opinions regarding the role that EGFR vIII in tumorigenesis and tumor progression are clearly conflicting and, therefore, it is crucial not only to find out its mechanism of action, but also to definitely identify its role in meningioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8478197PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255133PLOS

Publication Analysis

Top Keywords

egfr viii
16
role epidermal
8
epidermal growth
8
growth factor
8
factor receptor
8
receptor variant
8
variant iii
8
exploring role
4
iii meningeal
4
meningeal tumors
4

Similar Publications

Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme (GBM) presents a challenge for treatment due to its antigenic variability, prompting researchers to develop multivalent immunotherapies that target multiple tumor antigens to improve effectiveness.
  • The study introduces a new class of antibodies called DNA-encoded tri-specific T-cell engagers (DTriTEs) that target two specific GBM antigens and engage T cells, showing promising in vitro and in vivo results.
  • The leading DTriTE construct, DT2035, not only significantly reduced tumor burden and improved survival rates in mouse models but also showed sustained expression and induced strong immune responses, making it a potential game-changer for GBM treatment.
View Article and Find Full Text PDF

A significant challenge for chimeric antigen receptor (CAR) T cell therapy against glioblastoma (GBM) is its immunosuppressive microenvironment, which is densely populated by protumoral glioma-associated microglia and macrophages (GAMs). Myeloid immune checkpoint therapy targeting the CD47-signal regulatory protein alpha (SIRPα) axis induces GAM phagocytic function, but CD47 blockade monotherapy is associated with toxicity and low bioavailability in solid tumors. In this work, we engineer a CAR T cell against epidermal growth factor receptor variant III (EGFRvIII), constitutively secreting a signal regulatory protein gamma-related protein (SGRP) with high affinity to CD47.

View Article and Find Full Text PDF

Background: Kinase-impaired class III BRAF mutations have recently received attention as a possible prognostic factor and therapeutic target. Class III BRAF variants differ from class I and class II mutations in terms of mechanism of pathway activation and therapeutic vulnerabilities. Genomic landscape analyses of tumors in large real-world cohorts represent a great opportunity to further characterize tumor-related molecular events and treatment vulnerabilities, however, such data is not yet available for tumors with BRAF class III mutations.

View Article and Find Full Text PDF
Article Synopsis
  • Oncogene amplification on extrachromosomal DNA (ecDNA) is linked to treatment resistance and poorer survival in cancer patients, particularly those with glioblastoma, contributing to genetic diversity in tumors.* ! -
  • The study used a new computational model called 'SPECIES' to analyze tumor samples from 94 glioblastoma patients, providing insights into how ecDNA evolves in time and space within tumors.* ! -
  • Findings reveal significant patterns in ecDNA copy number variation, indicating strong positive selection on certain oncogenes and suggesting that ecDNA accumulation occurs before major cell growth phases.* !
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!