Nanoparticles are frequently used as targeting delivery systems for therapeutic and diagnostic radiopharmaceuticals. Polyethylene oxide-polyacrylic acid (PEO-PAAc) nanogel was prepared via γ-radiation-induced polymerization. Variable factors affecting nanoparticles size were investigated. The nanogel was radiolabeled with the imaging radioisotope Tc and finally conjugated with folic acid to target folate receptor actively. PEO-PAAc-folic acid gel was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). Biodistribution was studied in normal mice and solid tumor-bearing mice via intravenous and intratumor injections of the radiolabeled PEO-PAAc-folic acid nanogel. Results of biodistribution showed high selective uptake of the prepared complex in tumor muscle compared with normal muscle for both intravenous and intratumor injections. The T/NT ratio was found to be 6.186 and 294.5 for intravenous and intratumor injections, respectively. Consequently, Tc-PEO-PAAc-folic acid complex could be a promising agent for cancer diagnostic imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jlcr.3952DOI Listing

Publication Analysis

Top Keywords

intravenous intratumor
12
intratumor injections
12
polyethylene oxide-polyacrylic
8
acid peo-paac
8
peo-paac nanogel
8
cancer diagnostic
8
diagnostic imaging
8
peo-paac-folic acid
8
acid
6
oxide-polyacrylic acid-folic
4

Similar Publications

Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.

View Article and Find Full Text PDF

Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin.

ACS Nano

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Article Synopsis
  • Researchers have developed targeted covalent nanodrugs that improve the delivery and effectiveness of small-molecule chemotherapeutics, overcoming challenges in drug accumulation in tumors.
  • The nanodrugs utilize near-infrared (NIR) irradiation to activate and bind to specific cancer cell receptors, significantly increasing the accumulation of the drug doxorubicin within tumors compared to standard methods.
  • These advancements lead to enhanced cancer treatment outcomes, boosting the immune response and reducing tumor size while also minimizing side effects compared to traditional treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Human adenovirus type 5 (HAdV-5)-based oncolytic viruses have potential for cancer therapy, but face challenges like poor targeting and liver toxicity.
  • Researchers created a modified HAdV-5 vector (HAdV-5-HexPos3_ΔCAR) that improves cancer cell targeting and reduces off-target effects, especially in liver tissues.
  • The modified vector showed a significant increase in tumor presence while minimizing adverse effects, suggesting it could enhance the efficacy and safety of adenoviral cancer treatments.
View Article and Find Full Text PDF

Autophagy inhibition alleviates tumor desmoplasia and improves the efficacy of locally and systemically administered liposomal doxorubicin.

J Control Release

January 2025

Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

The abnormal physiology of the tumor microenvironment poses a challenge to the drug delivery in the tumor tissues. The dense tumor stroma hinders the movement of nanomedicine through the interstitium and negatively impacts their efficacy. In this study, hydroxychloroquine (HCQ) was investigated for its impact on alleviating the hindrance offered to the nanomedicine by extracellular matrix (ECM) components such as collagen and hyaluronan.

View Article and Find Full Text PDF

Purpose: Activating T cell costimulatory receptors is a promising approach for cancer immunotherapy. In preclinical work, adding an OX40 agonist to in situ vaccination (ISV) with SD101, a TLR9 agonist, was curative in a mouse model of lymphoma. We sought to test this combination in a Phase I clinical trial for patients with low-grade B cell lymphoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!