The bluntnose knifefish Brachyhypopomus occidentalis is a primary freshwater fish from north-western South America and Lower Central America. Like other Gymnotiformes, it has an electric organ that generates electric discharges used for both communication and electrolocation. We assembled a high-quality reference genome sequence of B. occidentalis by combining Oxford Nanopore and 10X Genomics linked-reads technologies. We also describe its demographic history in the context of the rise of the Isthmus of Panama. The size of the assembled genome is 540.3 Mb with an N50 scaffold length of 5.4 Mb, which includes 93.8% complete, 0.7% fragmented, and 5.5% of missing vertebrate/Actinoterigie Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 11.04% of the genome, and 34,347 protein-coding genes were predicted, of which 23,935 have been functionally annotated. Demographic analysis suggests a rapid effective population expansion between 3 and 5 Myr, corresponding to the final closure of the Isthmus of Panama (2.8-3.5 Myr). This event was followed by a sudden and constant population decline during the last 1 Myr, likely associated with strong shifts in both precipitation and sea level during the Pleistocene glacial-interglacial cycles. The de novo genome assembly of B. occidentalis will provide novel insights into the molecular basis of both electric signal productions and detection and will be fundamental for understanding the processes that have shaped the diversity of Neotropical freshwater environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8536545PMC
http://dx.doi.org/10.1093/gbe/evab223DOI Listing

Publication Analysis

Top Keywords

novo genome
8
genome assembly
8
brachyhypopomus occidentalis
8
isthmus panama
8
electric
4
assembly electric
4
electric fish
4
fish brachyhypopomus
4
occidentalis
4
occidentalis hypopomidae
4

Similar Publications

Completing a molecular timetree of primates.

Front Bioinform

December 2024

Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States.

Primates, consisting of apes, monkeys, tarsiers, and lemurs, are among the most charismatic and well-studied animals on Earth, yet there is no taxonomically complete molecular timetree for the group. Combining the latest large-scale genomic primate phylogeny of 205 recognized species with the 400-species literature consensus tree available from TimeTree.org yields a phylogeny of just 405 primates, with 50 species still missing despite having molecular sequence data in the NCBI GenBank.

View Article and Find Full Text PDF

We describe for the first time the case of a woman presenting with Tatton-Brown-Rahman syndrome (TBRS) and multiple endocrine neoplasia (MEN). She developed primary hyperparathyroidism at age 13, a pituitary cyst at age 14, adrenal tumor at age 21, and metastatic insulinoma at age 34. In addition, she showed intellectual disability, obesity, multiple lipomas, facial dysmorphia, hemihypertrophy and kyphoscoliosis.

View Article and Find Full Text PDF

It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms. De novo genes frequently emerge in proximity to existing genes, forming gene overlaps. Here, we present an analysis of the evolutionary history of a putative de novo gene, lawc, which overlaps with the conserved Trf2 gene, which encodes a general transcription factor in Drosophila melanogaster.

View Article and Find Full Text PDF

Bovine spastic syndrome (SS) is a progressive, adult-onset neuromuscular disorder (NMD). SS is inherited but the mode of inheritance is unclear. The aim of this study was to characterize the phenotype and to identify a possible genetic cause of SS by whole-genome sequencing (WGS) and focusing on protein-changing variants.

View Article and Find Full Text PDF

Background/aim: Neurofibromatosis type 1 (NF1) is a genetic disorder with an incidence of approximately one in 3,000. More than half of the patients have new de novo pathogenic variants of the NF1 gene. In most family cases, all family members share an identical NF1-variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!