Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers.

Biochem Soc Trans

Cell Death and Survival Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.

Published: November 2021

The deregulation of apoptosis is a key contributor to tumourigenesis as it can lead to the unwanted survival of rogue cells. Drugs known as the BH3-mimetics targeting the pro-survival members of the BCL-2 protein family to induce apoptosis in cancer cells have achieved clinical success for the treatment of haematological malignancies. However, despite our increasing knowledge of the pro-survival factors mediating the unwanted survival of solid tumour cells, and our growing BH3-mimetics armamentarium, the application of BH3-mimetic therapy in solid cancers has not reached its full potential. This is mainly attributed to the need to identify clinically safe, yet effective, combination strategies to target the multiple pro-survival proteins that typically mediate the survival of solid tumours. In this review, we discuss current and exciting new developments in the field that has the potential to unleash the full power of BH3-mimetic therapy to treat currently recalcitrant solid malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589438PMC
http://dx.doi.org/10.1042/BST20210750DOI Listing

Publication Analysis

Top Keywords

solid cancers
8
unwanted survival
8
survival solid
8
bh3-mimetic therapy
8
solid
5
targeting bcl-2-regulated
4
bcl-2-regulated apoptotic
4
apoptotic pathway
4
pathway treatment
4
treatment solid
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.

View Article and Find Full Text PDF

Background: Based on preclinical data showing addition of CDK4/6 inhibitors to gemcitabine was synergistic, ribociclib was evaluated in combination with gemcitabine to determine the maximum tolerated dose (MTD) and dose limiting toxicities (DLT).

Methods: In this single arm multicohort phase I trial, we evaluated the safety and efficacy of ribociclib plus gemcitabine in patients with advanced solid tumors. Patients received gemcitabine intravenously on days 1 and 8 followed by ribociclib days 8-14, with treatment repeated every 3 weeks.

View Article and Find Full Text PDF

Exercise and mindfulness-based interventions have growing evidence for managing fatigue and comorbid symptoms; however, packaging them in a cohesive digital way for patients undergoing cancer treatment has not been evaluated. We conducted a randomized controlled trial to assess the impact of a 12 week digital integrative medicine program, Integrative Medicine at Home (IM@Home), versus enhanced usual care on fatigue severity (primary outcome), comorbid symptoms and acute healthcare utilization (secondary outcomes), in 200 patients with solid tumors experiencing fatigue during treatment. Fatigue severity decreased more in IM@Home than in the control (1.

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!