The clinical high-risk period before a first episode of psychosis (CHR-P) has been widely studied with the goal of understanding the development of psychosis; however, less attention has been paid to the 75%-80% of CHR-P individuals who do not transition to psychosis. It is an open question whether multivariable models could be developed to predict remission outcomes at the same level of performance and generalizability as those that predict conversion to psychosis. Participants were drawn from the North American Prodrome Longitudinal Study (NAPLS3). An empirically derived set of clinical and demographic predictor variables were selected with elastic net regularization and were included in a gradient boosting machine algorithm to predict prodromal symptom remission. The predictive model was tested in a comparably sized independent sample (NAPLS2). The classification algorithm developed in NAPLS3 achieved an area under the curve of 0.66 (0.60-0.72) with a sensitivity of 0.68 and specificity of 0.53 when tested in an independent external sample (NAPLS2). Overall, future remitters had lower baseline prodromal symptoms than nonremitters. This study is the first to use a data-driven machine-learning approach to assess clinical and demographic predictors of symptomatic remission in individuals who do not convert to psychosis. The predictive power of the models in this study suggest that remission represents a unique clinical phenomenon. Further study is warranted to best understand factors contributing to resilience and recovery from the CHR-P state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886593PMC
http://dx.doi.org/10.1093/schbul/sbab115DOI Listing

Publication Analysis

Top Keywords

prodromal symptom
8
symptom remission
8
clinical demographic
8
sample napls2
8
psychosis
6
remission
5
clinical
5
individualized prediction
4
prediction prodromal
4
remission youth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!