Hydrogel-based soft and stretchable materials with skin/tissue-like mechanical properties provide new avenues for the design and fabrication of wearable sensors. However, synthesizing multifunctional hydrogels that simultaneously possess excellent mechanical, electrical and electromagnetic interference (EMI) shielding effectiveness is still a great challenge. In this work, the freeze-casting method is employed to fabricate a multifunctional hydrogel by filling FeO clusters into poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT:PSS) and polyvinyl alcohol (PVA) composite aqueous solution. The hydrogel possesses superior electrical and mechanical properties as well as great electromagnetic wave shielding properties. Benefiting from the high stretchability (∼904.5%) and fast sensing performance (response time ∼9 ms and self-recovery time ∼12 ms within the strain range ∼100%), the monitoring of human activities and manipulation of a remote-controlled toy car using the hydrogel-based stretchable strain sensors are successfully demonstrated. In addition, a great EMI shielding effectiveness with more than 46 dB in the frequencies of 8-12.5 GHz can be obtained, which provides an alternative strategy for designing next-generation EMI shielding materials. These results indicate that the multifunctional hydrogels can be used as flexible and stretchable sensing electronics requiring effective EMI shielding.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm01027aDOI Listing

Publication Analysis

Top Keywords

emi shielding
20
multifunctional hydrogels
12
sensing electronics
8
effective emi
8
shielding properties
8
mechanical properties
8
shielding effectiveness
8
shielding
6
emi
5
stretchable
4

Similar Publications

This work explores the enhancement of EMI shielding efficiency of polyurethane (PU) foam by loading multiwall carbon nanotube (MWCNTs)-decorated hollow glass microspheres (HGMs). MWCNT was coated onto the HGM surface by a simple solution casting technique. The coated HGM particles were loaded in PU foams, resulting in an even dispersion of MWCNT in the foam struts, thereby forming an interconnected conductive network in the polymer matrix.

View Article and Find Full Text PDF

The desire to reduce secondary pollution from shielded electronics devices demands electromagnetic interference (EMI) shields with high green index (GI), which is the ratio of absorbance over reflectance. Achieving high GI values simultaneously with high shielding effectiveness (SE) over 50 dB is a serious unresolved challenge. Reducing the impedance mismatch between the shield and free space is the key to reducing the reflection of incoming radiation and enabling more penetration into the body of the shield for absorption.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding.

Nanomaterials (Basel)

January 2025

Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.

Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.

View Article and Find Full Text PDF

Lightweight 3D-printed chitosan/MXene aerogels for advanced electromagnetic shielding, energy harvesting, and thermal management.

Carbohydr Polym

March 2025

Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada. Electronic address:

This study focuses on the fabrication of 3D-printed chitosan/TiCT-MXene aerogels with varying MXene concentrations (1, 2, 5, and 10 wt%) using the direct ink writing (DIW) method. The inks were freeze-dried to form aerogels, and FTIR and XRD analyses confirmed interactions between chitosan and MXene molecules, leading to increased spacing between MXene nanosheets. Rheological testing showed improved shear-thinning behavior, enhancing printability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!