Planar chiral [2.2]paracyclophanyl-based boron fluoride complexes: synthesis, crystal structure and photophysical properties.

Dalton Trans

Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng, 252000, People's Republic of China.

Published: September 2021

AI Article Synopsis

Article Abstract

Planar chiral [2.2]paracyclophanyl-based boron fluoride complexes (3a-3d) were designed and facilely synthesized. The X-ray structure study, theoretical calculations and CD spectra reveal the intense emission and planar chiral structures of these complexes. In particular, 3a-3d show moderate quantum yields and large Stokes shifts both in solution and solid state. Furthermore, the blue-shifted mechanochromic properties of 3a and 3b were both investigated in the solid state. This work is the first study on planar chiral boron monofluoride complexes within the boron fluoride complex field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt02231hDOI Listing

Publication Analysis

Top Keywords

planar chiral
16
boron fluoride
12
chiral [22]paracyclophanyl-based
8
[22]paracyclophanyl-based boron
8
fluoride complexes
8
complexes 3a-3d
8
solid state
8
planar
4
boron
4
complexes
4

Similar Publications

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Construction of Double-layered DNA Tiles and Arrays from Double Crossover Motifs.

Chembiochem

January 2025

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, P. R. China E-amil.

DNA double crossover (DX) motifs including DAE (double crossover, antiparallel, even spacing) and DAO (double crossover, antiparallel, odd spacing) are well-known monolayered DNA building blocks for construction of 2D DNA arrays and tubes in nanoscale and microscale. Compared to the 3D architectures of DNA origami and single-stranded DNA bricks to build nanoscale 3D bundles, tessellations, gears, castles, etc., designs of double- and multi-layers of DX motifs for 3D architectures are still limited.

View Article and Find Full Text PDF

The asymmetric unit of the title compound is composed of one host mol-ecule, -4-(1 ,5 -3-aza-1,5(3,9)-dicarbazola-cyclo-octa-phane-3-yl)benzo-nitrile and one di-chloro-methane solvate mol-ecule, CHN·CHCl. The host mol-ecule possesses a planar chirality but crystallizes as a racemate in the space group 2/. It adopts an -configuration, in which two carbazole rings are partially overlapped with a parallel orientation.

View Article and Find Full Text PDF

Chiral Phonons Induced from Spin Dynamics via Magnetoelastic Anisotropy.

Phys Rev Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • The proposed mechanism generates chiral phononlike excitations through magnetoelastic couplings without needing magnetic fields or out-of-plane magnetization.
  • By analyzing a triangular lattice ferromagnet, the research reveals how lattice symmetry influences chirality, linking it to topological phonon classes.
  • The study suggests potential applications in spintronics and phononics, emphasizing the experimental viability of measuring phonon magnetization and thermal Hall conductivity in anisotropic magnets.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!