[Carbonized Apple Branches Decrease the Accumulation and Damage of Cadmium on Apple Rootstock by Reducing DTPA-Cd in Soil].

Huan Jing Ke Xue

State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Published: October 2021

To explore the effects of carbonized apple branches on cadmium(Cd) accumulation and its damage to apple rootstock, the rootstocks of apple( Rehd.) in pots containing soil together with 0.5% and 1%() carbonized apple branches were irrigated by a nutrient solution containing CdSO. The content of DTPA-Cd(cadmium extracted by diethylenetriamine pentaacetic acid) in the potting soil, and the accumulation of Cd in the roots, stems, and leaves of apple rootstocks, were subsequently monitored. The activities of antioxidant enzymes in roots and leaves, root cell death, and the net photosynthesis rate were further analyzed. The results showed that the concentration of DTPA-Cd in the potting soil with carbonized apple branches was significantly lower than that without carbonized apple branches(Cd-only). Compared with the Cd-only treatment, the concentration of DTPA-Cd in the potting soil decreased by 17.50% and 25.55% in the treatment with 0.5% and 1%() carbonized apple branches for 12 days. The Cd accumulation in roots, stems, and leaves; the accumulations of superoxide anions(·O), hydrogen peroxide(HO), and malondialdehyde(MDA) in roots and leaves; and the amount of cell death in the roots of apple rootstock treated by carbonized apple branches were significantly lower compared to the Cd-only treatment. However, the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in the roots and leaves, and the net photosynthesis rate of apple rootstock treated by carbonized apple branches, were significantly higher than under the Cd-only treatment. Compared with the Cd-only treatment, Cd accumulation in roots decreased by 29.49% and 37.18% in the treatment with 0.5% and 1%() carbonized apple branches for 12 days, and the amount of cell death decreased by 22.73% and 29.09%, respectively. Our results show that carbonized apple branches reduce the uptake and accumulation of Cd in apple rootstock by reducing the content of DTPA-Cd in the soil, thereby alleviating the damaging effect of Cd on cells and photosynthesis. Moreover, the use of 1%() carbonized apple branches was more effective than 0.5%().

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202102109DOI Listing

Publication Analysis

Top Keywords

apple branches
40
carbonized apple
40
apple rootstock
20
apple
17
cd-only treatment
16
05% carbonized
12
potting soil
12
accumulation roots
12
roots leaves
12
cell death
12

Similar Publications

A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.

View Article and Find Full Text PDF

This study investigates the properties of egg-free mayonnaise prepared using chia seed protein hydrolysate (CSPH) and pectin extracted from apple pomace (PA) as alternatives to egg, comparing it to traditional egg-based mayonnaise. Chia seed protein was hydrolyzed using Protamex and Bromelain enzymes, while apple pectin was extracted through acid hydrolysis at 90 °C. Four mayonnaise treatments were prepared: T1 (control: 6 % egg), T2 (4 % egg + 1 % CSPH + 1 % PA), T3 (2 % egg + 2 % CSPH + 2 % PA), and T4 (0 % egg + 3 % CSPH + 3 % PA).

View Article and Find Full Text PDF

The current study isolated a homogeneous polysaccharide (AP) with a molecular weight of 7.9 kDa from the pomace of Fuji apples. AP was found to consists of rhamnose, galactose, arabinose, glucose, and galacturonic acid in a ratio of 4.

View Article and Find Full Text PDF

Ecofriendly and biocompatible biochars derived from waste-branches for direct and efficient solid-phase extraction of benzodiazepines in crude urine sample prior to LC-MS/MS.

Mikrochim Acta

January 2025

School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.

Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.

View Article and Find Full Text PDF

Comparative Analysis of Single-Channel and Multi-Channel Classification of Sleep Stages Across Four Different Data Sets.

Brain Sci

November 2024

Department of Neurology, Beth Isreal Deaconess Medical Center, Harvard Medical School, Harvard University, Cambridge, MA 02215, USA.

: Manually labeling sleep stages is time-consuming and labor-intensive, making automatic sleep staging methods crucial for practical sleep monitoring. While both single- and multi-channel data are commonly used in automatic sleep staging, limited research has adequately investigated the differences in their effectiveness. In this study, four public data sets-Sleep-SC, APPLES, SHHS1, and MrOS1-are utilized, and an advanced hybrid attention neural network composed of a multi-branch convolutional neural network and the multi-head attention mechanism is employed for automatic sleep staging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!