Semiconductor photocatalysts, using sunlight to stimulate various photocatalytic reactions, are promising materials for solving the energy crisis and environmental problems. However, the low photocatalytic efficiency and high cost pose major challenges for their widespread application. Mimicking the natural photosynthesis system, we propose a direct Z-scheme photocatalyst based on a Janus van der Waals heterostructure (vdWH) comprising SnC and Janus SeSnS monolayers. From first-principles calculations, the intrinsic built-in electric field of Janus SeSnS and the charge transfer from the SnC to the SeSnS layer give rise to a type-II band alignment. Such a band alignment benefits the formation of spatially separated reductive and oxidative active sites and the reduction of the global bandgap of the Janus vdWH. The proposed material increases the solar-to-hydrogen conversion efficiency to 60.8%. Besides, we also find that the light absorption coefficient is stacking configuration controllable and strain-tunable, , the tensile strain promotes photocatalytic efficiency. Moreover, because Sn, S, and Se are environmentally benign and inexpensive elements, SnC/SeSnS vdWH is a promising noble-metal-free direct Z-scheme photocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp03398k | DOI Listing |
Small
January 2025
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.
View Article and Find Full Text PDFMolecules
December 2024
School of Physics, Changchun Normal University, Changchun 130032, China.
A highly versatile Z-scheme heterostructure, HoSmSbO/YbDyBiNbO (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual ABO compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of HoSmSbO and YbDyBiNbO, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT).
View Article and Find Full Text PDFNanoscale
January 2025
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China.
Herein, we propose a new GaN/MoSiP van der Waals (vdWs) heterostructure constructed by vertically stacking GaN and MoSiP monolayers. Its electronic, optical, and photocatalytic properties are explored DFT++BSE calculations. The calculated binding energy and phonon spectrum demonstrated the material's high stabilities.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, China.
Two-dimensional van der Waals heterojunction materials have demonstrated significant potential for photocatalytic water splitting in hydrogen production, owing to their distinct electronic and optical properties. Among these materials, direct Z-scheme heterojunctions have attracted considerable attention in recent research. In this study, a novel CdO/ZrSSe heterojunction is designed using first-principles calculations.
View Article and Find Full Text PDFRSC Adv
December 2024
Departement of Physics, Namur Institute of Structured Matter (NISM), University of Namur Rue de Bruxelles 61 5000 Namur Belgium.
The urgent need for solar electricity production is critical for ensuring energy security and mitigating climate change. Achieving the optimal optical bandgap and effective carrier separation, essential for high-efficiency solar cells, remains a significant challenge when utilizing a single material. In this study, we design a BAs/GeC heterostructure using density functional theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!