Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612390PMC
http://dx.doi.org/10.1038/s41587-021-01019-xDOI Listing

Publication Analysis

Top Keywords

spinal cord
16
wireless closed-loop
8
entire dorsoventral
8
dorsoventral spinal
8
targeted neurons
8
neurons pathways
8
closed-loop optogenetics
4
optogenetics entire
4
spinal
4
cord
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!