Identifying individuals with recent COVID-19 through voice classification using deep learning.

Sci Rep

Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama 6th Road, Bangkok, 10400, Thailand.

Published: September 2021

Recently deep learning has attained a breakthrough in model accuracy for the classification of images due mainly to convolutional neural networks. In the present study, we attempted to investigate the presence of subclinical voice feature alteration in COVID-19 patients after the recent resolution of disease using deep learning. The study was a prospective study of 76 post COVID-19 patients and 40 healthy individuals. The diagnoses of post COVID-19 patients were based on more than the eighth week after onset of symptoms. Voice samples of an 'ah' sound, coughing sound and a polysyllabic sentence were collected and preprocessed to log-mel spectrogram. Transfer learning using the VGG19 pre-trained convolutional neural network was performed with all voice samples. The performance of the model using the polysyllabic sentence yielded the highest classification performance of all models. The coughing sound produced the lowest classification performance while the ability of the monosyllabic 'ah' sound to predict the recent COVID-19 fell between the other two vocalizations. The model using the polysyllabic sentence achieved 85% accuracy, 89% sensitivity, and 77% specificity. In conclusion, deep learning is able to detect the subtle change in voice features of COVID-19 patients after recent resolution of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476606PMC
http://dx.doi.org/10.1038/s41598-021-98742-xDOI Listing

Publication Analysis

Top Keywords

deep learning
16
covid-19 patients
16
polysyllabic sentence
12
convolutional neural
8
patients resolution
8
resolution disease
8
post covid-19
8
voice samples
8
'ah' sound
8
coughing sound
8

Similar Publications

CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning.

Med Image Comput Comput Assist Interv

October 2024

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Recent advancements in Contrastive Language-Image Pre-training (CLIP) [21] have demonstrated notable success in self-supervised representation learning across various tasks. However, the existing CLIP-like approaches often demand extensive GPU resources and prolonged training times due to the considerable size of the model and dataset, making them poor for medical applications, in which large datasets are not always common. Meanwhile, the language model prompts are mainly manually derived from labels tied to images, potentially overlooking the richness of information within training samples.

View Article and Find Full Text PDF

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.

View Article and Find Full Text PDF

Unlabelled: Upper extremity deep vein thrombosis (UEDVT) is relatively rare, and much less as an initial presentation of systemic lupus erythematosus (SLE). Primary UEDVT should be considered in individuals with unilateral arm swelling where the brachial, axillary, and subclavian veins are frequently involved. SLE is a chronic autoimmune disease that predominantly affects women of childbearing age and of African descent.

View Article and Find Full Text PDF

Impact of cardiovascular magnetic resonance in single ventricle physiology: a narrative review.

Cardiovasc Diagn Ther

December 2024

Department of Pediatric Cardiology, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.

Background And Objective: Cardiovascular magnetic resonance (CMR) is a routine cross-sectional imaging modality in adults with congenital heart disease. Developing CMR techniques and the knowledge that CMR is well suited to assess long-term complications and to provide prognostic information for single ventricle (SV) patients makes CMR the ideal assessment tool for this patient cohort. Nevertheless, many of the techniques have not yet been incorporated into day-to-day practice.

View Article and Find Full Text PDF

This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!