Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The acquisition of postural control is an elaborate process, which relies on the balanced integration of multisensory inputs. Current models suggest that young children rely on an 'en-block' control of their upper body before sequentially acquiring a segmental control around the age of 7, and that they resort to the former strategy under challenging conditions. While recent works suggest that a virtual sensory environment alters visuomotor integration in healthy adults, little is known about the effects on younger individuals. Here we show that this default coordination pattern is disrupted by an immersive virtual reality framework where a steering role is assigned to the trunk, which causes 6- to 8-year-olds to employ an ill-adapted segmental strategy. These results provide an alternate trajectory of motor development and emphasize the immaturity of postural control at these ages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476578 | PMC |
http://dx.doi.org/10.1038/s41598-021-96866-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!