Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409590PMC
http://dx.doi.org/10.1172/JCI144898DOI Listing

Publication Analysis

Top Keywords

ischemic stroke
20
stroke
10
inter-α inhibitor
8
inhibitor proteins
8
stroke outcomes
8
complement activation
8
stroke models
8
beneficial effects
8
ischemic
5
iaips
5

Similar Publications

Background And Aims: Iron deficiency (ID) is a prognostic factor in heart failure and acute coronary syndrome. However, its role in cerebrovascular diseases is controversial. We aimed to determine the impact of ID on the functional outcome of acute ischemic stroke patients.

View Article and Find Full Text PDF

Perillaldehyde pretreatment alleviates cerebral ischemia-reperfusion injury by improving mitochondrial structure and function via the Nrf2/Keap1/Trx2 axis.

Phytomedicine

December 2024

Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Perilladehyde, an extract of perillae in the Labiatae family, can produce significant anti-inflammatory and antioxidant effects. Although literature evidences the favorable effect of perillaldehyde on ischemic stroke, the exact mechanism remains blurred.

Purpose: This study attempted to explore the impact of perillaldehyde on cerebral ischemia-reperfusion injury and the related action mechanism.

View Article and Find Full Text PDF

Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.

View Article and Find Full Text PDF

Background: Accurate distinction between stroke etiologic subtypes is critical for physicians to provide tailored treatment. The triglyceride-glucose (TyG) index, a marker of insulin resistance, has been associated with stroke risk but its role in distinguishing stroke etiologic subtypes remains unclear. We aimed to assess the TyG index's ability to differentiate cardioembolic (CE) from non-cardioembolic (NCE) strokes.

View Article and Find Full Text PDF

Background: Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!