Aging populations in developed countries will increase the demand for implantable materials to support tissue regeneration. Whey Protein Isolate (WPI), derived from dairy industry by-products, can be processed into hydrogels with the following desirable properties for applications in tissue engineering: (i) ability to support adhesion and growth of cells; (ii) ease of sterilization by autoclaving and (iii) ease of incorporation of poorly water-soluble drugs with antimicrobial activity, such as phloroglucinol (PG), the fundamental phenolic subunit of marine polyphenols. In this study, WPI hydrogels were enriched with PG at concentrations between 0 and 20% w/v. PG solubilization in WPI hydrogels is far higher than in water. Enrichment with PG did not adversely affect mechanical properties, and endowed antimicrobial activity against a range of bacteria which occur in healthcare-associated infections (HAI). WPI-PG hydrogels supported the growth of, and collagen production by human dental pulp stem cells and - to a lesser extent - of osteosarcoma-derived MG-63 cells. In summary, enrichment of WPI with PG may be a promising strategy to prevent microbial contamination while still promoting stem cell attachment and growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2021.112412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!