Willow Aboveground and Belowground Traits Can Predict Phytoremediation Services.

Plants (Basel)

Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.

Published: September 2021

The increasing number of contaminated sites worldwide calls for sustainable remediation, such as phytoremediation, in which plants are used to decontaminate soils. We hypothesized that better anchoring phytoremediation in plant ecophysiology has the potential to drastically improve its predictability. In this study, we explored how the community composition, diversity and coppicing of willow plantations, influenced phytoremediation services in a four-year field trial. We also evaluated how community-level plant functional traits might be used as predictors of phytoremediation services, which would be a promising avenue for plant selection in phytoremediation. We found no consistent impact of neither willow diversity nor coppicing on phytoremediation services directly. These services were rather explained by willow traits related to resource economics and management strategy along the plant "fast-slow" continuum. We also found greater belowground investments to promote plant bioconcentration and soil decontamination. These traits-services correlations were consistent for several trace elements investigated, suggesting high generalizability among contaminants. Overall, our study provides evidence, even using a short taxonomic (and thus functional) plant gradient, that traits can be used as predictors for phytoremediation efficiency for a broad variety of contaminants. This suggests that a trait-based approach has great potential to develop predictive plant selection strategies in phytoremediation trials, through a better rooting of applied sciences in fundamental plant ecophysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471398PMC
http://dx.doi.org/10.3390/plants10091824DOI Listing

Publication Analysis

Top Keywords

phytoremediation services
16
phytoremediation
9
plant
8
plant ecophysiology
8
diversity coppicing
8
traits predictors
8
predictors phytoremediation
8
plant selection
8
services
5
willow
4

Similar Publications

Advances in waste-derived functional materials for PFAS remediation.

Biodegradation

January 2025

Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.

Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.

View Article and Find Full Text PDF

Preparation and properties of waterborne polyurethane/nanocellulose/sepiolite composite aerogel for sound absorption and heat insulation.

Int J Biol Macromol

January 2025

College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China. Electronic address:

Faced with all kinds of serious ecological and environmental protection problems in today's society, development must take the sustainable and green road. Nanocellulose aerogels with the advantages of wide resource of raw materials, low cost, good biocompatibility and biodegradation, are good thermal and sound insulation materials. Herein, a versatile composite aerogel with good thermal stability and heat-insulating property was prepared by freeze-drying method using cellulose nanocrystals (CNCs), waterborne polyurethane (WPU) and sepiolite (SEP) as substrates.

View Article and Find Full Text PDF

sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined.

View Article and Find Full Text PDF

Degradation of organophosphate flame retardants by white-rot fungi: Degradation pathways and associated toxicity.

Sci Total Environ

January 2025

Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.

The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.

View Article and Find Full Text PDF

Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services.

Environ Sci Pollut Res Int

January 2025

Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.

Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!