Calcium Oxalate Crystals in Leaves of the Extremophile Plant (Kunth) Bartl. (Caryophyllaceae).

Plants (Basel)

Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile.

Published: August 2021

The presence of calcium oxalate (CaOx) crystals has been widely reported in the plant kingdom. These structures play a central role in various physiological functions, including calcium regulation, metal detoxification, and photosynthesis. However, precise knowledge about their possible roles and functions in plants is still limited. Therefore, the present work aims to study the ecotypic variability of , an extremophile species, concerning CaOx crystal accumulation. The CaOx crystals were studied in leaves of collected from different provenances within a latitudinal gradient (From Andes mountains in central Chile to Antarctica) and grown under common garden conditions. Polarized light microscopy, digital image analysis, and electron microscopy were used to characterize CaOx crystals. The presence of CaOx crystals was confirmed in the four provenances of , with significant differences in the accumulation among them. The Andean populations presented the highest accumulation of crystals and the Antarctic population the lowest. Electron microscopy showed that CaOx crystals in are classified as druses based on their morphology. The differences found could be linked to processes of ecotypic differentiation and plant adaptation to harsh environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470922PMC
http://dx.doi.org/10.3390/plants10091787DOI Listing

Publication Analysis

Top Keywords

caox crystals
20
calcium oxalate
8
electron microscopy
8
crystals
7
caox
6
oxalate crystals
4
crystals leaves
4
leaves extremophile
4
extremophile plant
4
plant kunth
4

Similar Publications

Sulfated Polysaccharides Inhibit CaOx Stone Formation by Inhibiting Calcium Oxalate Crystallization, Cellular Inflammation, and Crystal Adhesion.

J Agric Food Chem

December 2024

Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Hyperoxaluria can easily induce calcium oxalate (CaOx) crystals and cause cell damage, thereby increasing the risk of kidney stone formation. In this study, three sulfated polysaccharides (PSPs) were obtained by the sulfur trioxide-pyridine method. The antioxidant activity of PSPs and the inhibitory effects of PSPs on CaOx crystallization, cellular oxidative damage, and cellular inflammation were explored in vitro, and PSPs were used to treat hyperoxaluria-induced crystallization model mice in order to validate the stone-preventive effect of PSPs in vivo.

View Article and Find Full Text PDF

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

The SIRT6 allosteric activator MDL-800 suppresses calcium oxalate nephrocalcinosis by alleviating inflammatory and renal damage.

Int Immunopharmacol

December 2024

Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China. Electronic address:

Article Synopsis
  • Kidney stones are primarily made of calcium oxalate and can cause inflammation and damage in kidney cells, leading to a condition known as CaOx nephrocalcinosis.
  • The study tested a new drug, MDL-800, which acts as an allosteric agonist for Sirtuin 6 (SIRT6), showing it can reduce kidney cell damage and inflammation caused by calcium oxalate crystals in both cell cultures and animal models.
  • MDL-800 works by decreasing levels of inflammatory proteins and enhancing SIRT6's function, offering a potential new treatment approach for kidney damage linked to calcium oxalate stones.
View Article and Find Full Text PDF

Kidney stones are a foremost clinical concern in urology with CaOx crystals accounting for roughly 80% of these renal formations. This research endeavor seeks to ascertain the protective effects of Metformin-encapsulated selenium nanoparticles (M@Se NPs), combined with a 55% hydroethanolic flower extract from () in countering the formation of kidney stones in Male Sprague Dawley rats. The particle's diameter was measured to be 39 nm and 13.

View Article and Find Full Text PDF

The commencement of kidney stone formation involves a crucial initial phase characterized by injury to renal tubular cells caused by calcium oxalate (CaOx). Dioscin (Dio) has been acknowledged for its potent anti-inflammation and anti-apoptotic properties; nevertheless, the impact and underlying Investigation into the molecular basis underlying the action of Dioscin in mitigating inflammation and apoptotic induced by exposure to calcium oxalate crystals in renal tissues remain unexplored. To comprehend the precise mechanism of Dioscin in the treatment of crystalline nephropathy, we conducted experiments utilizing a murine model of CaOx crystal deposition, induced by intraperitoneal administration of glyoxylate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!