Milk Exosomes Transfer Oligosaccharides into Macrophages to Modulate Immunity and Attenuate Adherent-Invasive (AIEC) Infection.

Nutrients

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Published: September 2021

Exosomes are abundance in human body fluids like urine, milk and blood. They act a critical role in extracellular and intracellular communication, intracellular trafficking and physiological regulation. Multiple immune-modulatory components, such as proteins, RNAs and carbohydrates (glycoproteins), have been found in human milk exosomes, which play immune-regulatory functions. However, little is known about oligosaccharides in milk exosomes, the "free sugars", which act critical roles in the development of infant's immature mucosal immune system. In this study, the profile of milk exosomes encapsulated human milk oligosaccharides (HMOs) was calibrated with characteristic oligosaccharides in colostrum and mature milk, respectively. The exosomes containing human milk oligosaccharides were uptaken by macrophages, which were responsible for the establishment of intestinal immunity. Furthermore, mice pretreated with exosome encapsulated HMOs were protected from AIEC infection and had significantly less LPS-induced inflammation and intestinal damage. Exosome encapsulated milk oligosaccharides are regarded to provide a natural manner for milk oligosaccharides to accomplish their critical functions in modifying newborn innate immunity. The understanding of the interaction between a mother's breastfeeding and the development of an infant's mucosal immune system would be advantageous. The transport of milk oligosaccharides to its target via exosome-like particles appears to be promising.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472098PMC
http://dx.doi.org/10.3390/nu13093198DOI Listing

Publication Analysis

Top Keywords

milk exosomes
20
milk oligosaccharides
20
human milk
12
milk
11
oligosaccharides
8
aiec infection
8
development infant's
8
mucosal immune
8
immune system
8
exosome encapsulated
8

Similar Publications

Detection and quantification of miRNA 148a expression in infant formulas.

J Food Sci

January 2025

Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Türkiye.

MiRNA 148a, which is associated with various biological processes such as immunity and cell differentiation, is one of the most abundant miRNAs in breast milk. This study aimed to determine the amount of miRNA 148a in different infant formulas, which are used for infants who cannot receive breast milk. The study analyzed 20 formulas, including stage one infant formulas (0-6 months of age), stage two follow-up formulas (6-12 months of age), stage three toddler formulas (above 12 months of age), and premature ones, analyzing miRNA 148a expression and qPCR miRNA gene expression, with significance set at p < 0.

View Article and Find Full Text PDF

Our research on the expression and characterization of exosomal miRNAs in buffalo milk, particularly in the context of healthy, sub-clinical mastitis and pasteurized milk, is a novel contribution to the field. We are the first to investigate the expressions of miRNAs and the characterization of exosomes in boiled and pasteurized milk. This study is based on clinical signs and CMT, where twenty buffalo milk samples were divided into normal and sub-clinical mastitis and a third group of ten commercial pasteurized milk.

View Article and Find Full Text PDF

Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies.

Int J Mol Sci

December 2024

Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.

Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites.

View Article and Find Full Text PDF

Comparative Analysis of miRNA Expression Profiles of Yak Milk-Derived Exosomes at Different Altitudes.

Animals (Basel)

January 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing.

View Article and Find Full Text PDF

Oral delivery of dihydroartemisinin for the treatment of melanoma via bovine milk exosomes.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.

Cancer, particularly skin cancer, is a major cause of mortality worldwide, with melanoma being one of the most aggressive and challenging to treat types. Current therapeutic options, such as dacarbazine (DTIC), have limitations due to dose-related toxicities like liver toxicity. Therefore, there is a need for new and effective treatments for melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!