Photoacoustic Properties of Polypyrrole Nanoparticles.

Nanomaterials (Basel)

Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic.

Published: September 2021

Photoacoustic imaging, an emerging modality, provides supplemental information to ultrasound imaging. We investigated the properties of polypyrrole nanoparticles, which considerably enhance contrast in photoacoustic images, in relation to the synthesis procedure and to their size. We prepared polypyrrole nanoparticles by water-based redox precipitation polymerization in the presence of ammonium persulphate (ratio Py:Oxi 1:0.5, 1:1, 1:2, 1:3, 1:5) or iron(III) chloride (Py:Oxi 1:2.3) acting as an oxidant. To stabilize growing nanoparticles, non-ionic polyvinylpyrrolidone was used. The nanoparticles were characterized and tested as a photoacoustic contrast agent in vitro on an imaging platform combining ultrasound and photoacoustic imaging. High photoacoustic signals were obtained with lower ratios of the oxidant (Py:APS ≥ 1:2), which corresponded to higher number of conjugated bonds in the polymer. The increasing portion of oxidized structures probably shifted the absorption spectra towards shorter wavelengths. A strong photoacoustic signal dependence on the nanoparticle size was revealed; the signal linearly increased with particle surface. Coated nanoparticles were also tested in vivo on a mouse model. To conclude, polypyrrole nanoparticles represent a promising contrast agent for photoacoustic imaging. Variations in the preparation result in varying photoacoustic properties related to their structure and allow to optimize the nanoparticles for in vivo imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470055PMC
http://dx.doi.org/10.3390/nano11092457DOI Listing

Publication Analysis

Top Keywords

polypyrrole nanoparticles
16
photoacoustic imaging
12
photoacoustic
9
photoacoustic properties
8
properties polypyrrole
8
nanoparticles
8
contrast agent
8
imaging
6
polypyrrole
4
nanoparticles photoacoustic
4

Similar Publications

An ultrasensitive and selective voltammetric platform combined a molecularly imprinted poly(pyrrole) membrane with Ag-nanoparticle-functionalized black phosphorus nanosheets (MIP/BPNS-AgNPs) was developed for trace GAT detection. The physicochemical properties of the MIP/BPNS-AgNPs were studied by various spectroscopic and electrochemical techniques. BPNS-AgNPs improved the ambient stability and electrochemical activity of the BPNS and possessed a large surface area for accommodating abundant templates to produce specific imprinted sites.

View Article and Find Full Text PDF

Near-infrared DNA-AgNCs enzyme-free fluorescence biosensing for microRNA imaging in living cells based on self-replicating catalytic hairpin self-assembly.

Int J Biol Macromol

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:

In this work, a fast signal amplification system mediated by self-replicating catalytic hairpin self-assembly (SCHA) was established for microRNA-155 using near-infrared DNA-Ag Nanoclusters (DNA-AgNCs) as fluorescence signal output. Among them, two fission target-like DNA sequences are merged into two hairpin DNA H1 and H2, and the AgNCs template sequence is designed at the sticky end of H1 and H2. The target can be recycled in the system to form a double-stranded DNA structure (H1-H2), which will detach the H1/H2-AgNCs from the surface of the polypyrrole nanoparticles (PPy NPs) and cause the near-infrared fluorescence signal of DNA-AgNCs to be restored.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are a candidate for green energy sources due to microbes' ability to generate charge in their metabolic processes. The main problem in MFCs is slow charge transfer between microorganisms and electrodes. Several methods to improve charge transfer have been used until now: modification of microorganisms by conductive polymers, use of lipophilic mediators, and conductive nanomaterials.

View Article and Find Full Text PDF

To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.

View Article and Find Full Text PDF

Objective: Spinal cord injury (SCI) is a severe and permanent nerve damage condition that poses significant burdens on individuals and society. Various therapeutic approaches have been explored to mitigate the consequences of SCI. Tissue engineering and regenerative medicine have emerged as a promising avenue for addressing this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!