CuZnSnS (CZTS) is a complex quaternary material, and obtaining a single-phase CZTS with no secondary phases is known to be challenging and dependent on the production technique. This work involves the synthesis and characterization of CZTS absorber layers for solar cells. Thin films were deposited on Si and glass substrates by a combined magnetron sputtering (MS) and pulsed laser deposition (PLD) hybrid system, followed by annealing without and with sulfur powder at 500 °C under argon (Ar) flow. Three different CuS, SnS, and ZnS targets were used each time, employing a different target for PLD and the two others for MS. The effect of the different target arrangements and the role of annealing and/or sulfurization treatment were investigated. The characterization of the absorber films was performed by grazing incidence X-ray diffraction (GIXRD), X-ray reflectometry (XRR), Raman spectroscopy, scanning electron microscopy, and regular transmission spectroscopy. The film with ZnS deposited by PLD and SnS and CuS by MS was found to be the best for obtaining a single CZTS phase, with uniform surface morphology, a nearly stoichiometric composition, and an optimal band gap of 1.40 eV. These results show that a new method that combines the advantages of both MS and PLD techniques was successfully used to obtain single-phase CuZnSnS films for solar cell applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469332 | PMC |
http://dx.doi.org/10.3390/nano11092403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!