A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High Q Resonant SbS-Lithium Niobate Metasurface for Active Nanophotonics. | LitMetric

High Q Resonant SbS-Lithium Niobate Metasurface for Active Nanophotonics.

Nanomaterials (Basel)

College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.

Published: September 2021

Phase change materials (PCMs) are attracting more and more attentions as enabling materials for tunable nanophotonics. They can be processed into functional photonic devices through customized laser writing, providing great flexibility for fabrication and reconfiguration. Lithium Niobate (LN) has excellent nonlinear and electro-optical properties, but is difficult to process, which limits its application in nanophotonic devices. In this paper, we combine the emerging low-loss phase change material Sb2S3 with LN and propose a new type of high Q resonant metasurface. Simulation results show that the Sb2S3-LN metasurface has extremely narrow linewidth of 0.096 nm and high quality (Q) factor of 15,964. With LN as the waveguide layer, strong nonlinear properties are observed in the hybrid metasurface, which can be employed for optical switches and isolators. By adding a pair of Au electrodes on both sides of the LN, we can realize dynamic electro-optical control of the resonant metasurface. The ultra-low loss of Sb2S3, and its combination with LN, makes it possible to realize a new family of high Q resonant metasurfaces for actively tunable nanophotonic devices with widespread applications including optical switching, light modulation, dynamic beam steering, optical phased array and so on.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468812PMC
http://dx.doi.org/10.3390/nano11092373DOI Listing

Publication Analysis

Top Keywords

high resonant
12
phase change
8
nanophotonic devices
8
resonant metasurface
8
metasurface
5
high
4
resonant sbs-lithium
4
sbs-lithium niobate
4
niobate metasurface
4
metasurface active
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!