Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size and on the electron density in the confining cavity surface. Here, we develop a theory of the Ps annihilation in nanocavities based on the fundamental role of the exchange correlations between the Ps-electron and the outer electrons, which are not usually considered but must be considered to correctly theorize the pickoff annihilation processes. We obtain an important relation connecting the two relevant annihilation rates (for the -Ps and the -Ps) with the electron density, which has the property of being totally independent of the geometrical characteristics of the nanoporous medium. This general relation can be used to gather information on the electron density and on the average cavity radius of the confining medium, starting from the experimental data on PALS annihilation spectra. Moreover, by analyzing our results, we also highlight that a reliable interpretation of the PALS spectra can only be obtained if the rule of 1/3 between the intensities of -Ps and -Ps lifetimes can be fulfilled.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8464731 | PMC |
http://dx.doi.org/10.3390/nano11092350 | DOI Listing |
Comput Struct Biotechnol J
December 2024
National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
Unlabelled: The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical and Electronic Engineering, International Islamic University Chittagong Kumira Chittagong 4318 Bangladesh
Perovskite solar cells are commonly employed in photovoltaic systems because of their special characteristics. Perovskite solar cells remain efficient, but lead-based absorbers are dangerous, restricting their manufacture. Therefore, studies in the field of perovskite materials are now focusing on investigating lead-free perovskites.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.
View Article and Find Full Text PDFFood Res Int
February 2025
Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India.
The research aimed to assess the effect of polysaccharides (maltodextrin and β-cyclodextrin) on technological properties of low-lactose milk powder obtained by spray drying of β-galactosidase hydrolysed milk. Low-lactose milk powders i.e.
View Article and Find Full Text PDFNano Lett
January 2025
Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Two-dimensional (2D) transition metal dichalcogenides (TMDs), such as WSe, are promising candidates for next-generation integrated circuits. However, the dependence of intrinsic properties of TMD devices on various processing steps remains largely unexplored. Here, using pristine p-type WSe devices as references, we comprehensively studied the influence of each step in traditional nanofabrication methods on device performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!