In the present work, composite materials very promising for biomedical and pharma-ceutical applications were investigated. They are composed of silver nanoparticles (Ag NPs) in a matrix constituted of calcium carbonate functionalized with hydroxyapatite (HA-FCC). The composites were obtained by different synthesis methods, starting from a mixture of the silver acetate with HA-FCC (using adsorption or mixing in wet conditions methods) and then treating them by exposure to visible light or calcination to promote the silver reduction; a synthetic procedure based on ultrasound-assisted reduction with NaBH or citrate was also carried out. The characterization by X-ray photoelectron spectroscopy and reflected electron energy loss spectroscopy analysis also involved the reference sample of HA-FCC matrix. Then the morphology of the Ag NPs and the crystalline structure of HA-FCC were studied by transmission electron microscopy and X-ray diffraction, respectively. To assess the effectiveness of the different methods on silver reduction, the Auger parameters α' were calculated and compared. The use of this methodology based on the Auger parameter is neither trivial nor ordinary. We demonstrate its validity since the different values of this parameter allow to identify the oxidation state of silver and consequently to evaluate the formation yield of metallic Ag NPs in the HA-FCC matrix and the effectiveness of the different reduction methods used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469523PMC
http://dx.doi.org/10.3390/nano11092263DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
8
silver reduction
8
ha-fcc matrix
8
silver
5
ha-fcc
5
hydroxyapatite functionalized
4
functionalized calcium
4
carbonate composites
4
composites nanoparticles
4
nanoparticles integrated
4

Similar Publications

Existing mortar uses self-healing powders that are based on mineral admixtures, whose reactive nature negatively impacts bacterial viability and diminishes their effectiveness over time. This study aims to develop non-reactive, sustainable biochar-based healing powders with extended bacterial viability to serve as self-healing admixture in bio-mortar. Biochar from coconut husk, coconut shell, and coconut leaf petiole was evaluated for compatibility with Bacillus pumilus RSB17, emphasizing bacterial growth and calcium carbonate precipitation.

View Article and Find Full Text PDF

Coastal reefs benefit the survival and growth of mobile organisms by providing shelter and increased food availability. Under increasing pressure from human activities, the coverage of subtidal reefs has decreased along the world's coasts. This decline is motivating efforts to restore these important habitats by re-introducing hard substrates into the coastal zone.

View Article and Find Full Text PDF

Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer.

ACS Biomater Sci Eng

January 2025

Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.

Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.

View Article and Find Full Text PDF

Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising technique for environmental remediation, particularly for heavy metal removal. This study explores the potential of MICP for Cr(iii) removal, analyzing the effects of temperature, pH, calcium source addition, and initial Cr(iii) concentration on removal efficiency. The results show that Cr(iii) can be efficiently removed with a removal rate approaching 100% under optimal conditions (25 °C, pH 7.

View Article and Find Full Text PDF

Sandstone-hosted uranium is mined in the Sahel regions of Niger. The Teloua aquifer is located beneath the ore-processing facilities of one such former mine, COMINAK. The pores of the sandstone bedrock are partially filled by tosudite, a clay with sorption capacities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!