We theoretically study the plasmonic coupling between magnetic plasmon resonances (MPRs) and propagating surface plasmon polaritons (SPPs) in a three-dimensional (3D) metamaterial consisting of vertical Au split-ring resonators (VSRRs) array on Au substrate. By placing the VSRRs directly onto the Au substrate to remove the dielectric substrates effect, the interaction between MPRs of VSRRs and the SPP mode on the Au substrate can generate an ultranarrow-band hybrid mode with full width at half maximum () of 2.2 nm and significantly enhanced magnetic fields, compared to that of VSRRs on dielectric substrates. Owing to the strong coupling, an anti-crossing effect similar to Rabi splitting in atomic physics is also obtained. Our proposed 3D metamaterial on a metal substrate shows high sensitivity ( = 830 nm/RIU) and figure of merit ( = 377), which could pave way for the label-free biomedical sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465648PMC
http://dx.doi.org/10.3390/nano11092194DOI Listing

Publication Analysis

Top Keywords

split-ring resonators
8
strong coupling
8
dielectric substrates
8
pronounced linewidth
4
linewidth narrowing
4
narrowing vertical
4
vertical metallic
4
metallic split-ring
4
resonators strong
4
coupling metal
4

Similar Publications

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Terahertz (THz) trace fingerprint detection is essential for identifying the characteristic biomolecular absorption fingerprints from inherent molecular rotational and vibrational modes. Plasmonic THz resonance shows a way to enhance the recognition of biomolecular absorption fingerprint spectra. In this research, we experimentally demonstrate a broadband THz fingerprint metasensor based on a pixelated toroidal metasurface, showcasing excellent capabilities in biochemical trace detection.

View Article and Find Full Text PDF

Electromagnetic metamaterials have demonstrated immense potential in the development of novel high-temperature wave-transparent materials, yet the requirements of their intricate structural design and strict stability pose dual challenges, particularly in high-speed radome applications. A strategy involving the synergistic modulation of boron nitride (BN) by dual metallic elements of Ca and Al (0.5Ca-0.

View Article and Find Full Text PDF

Achieving independent multitasked wavefront control by using an ultrathin plate is a challenge to increase information capacity in integration optics and radar applications. Transmission-reflection-integrated metasurface provides an efficient recipe primarily for multifunctional meta-device, however it is challenging to synergize both linear polarization (LP) and circular polarization (CP) using a single meta-plate. Here, a multichannel full-space coding metasurface composed of interleaved shared-aperture meta-atom is proposed to achieve large information capacity by capsulating judiciously engineered high efficiency triple sub-elements (modes) in four-layer scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!