Antibodies that can neutralize diverse HIV-1 strains develop in ~10-20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472920PMC
http://dx.doi.org/10.3390/v13091774DOI Listing

Publication Analysis

Top Keywords

vaccine design
8
hiv-1 spike
8
antibodies
5
structural update
4
update neutralizing
4
neutralizing epitopes
4
epitopes hiv
4
hiv envelope
4
envelope moving
4
moving target
4

Similar Publications

This study quantifies the impact of COVID-19 vaccination on hospitalization for COVID-19 infection in a South African private health insurance population. This retrospective cohort study is based on the analysis of demographic and claims records for 550,332 individuals belonging to two health insurance funds between 1 March 2020 and 31 December 2022. A Cox Proportional Hazards model was used to estimate the impact of vaccination (non-vaccinated, partly vaccinated, fully vaccinated) on COVID-19 hospitalization risk; and zero-inflated negative binomial models were used to estimate the impact of vaccination on hospital utilization and hospital expenditure for COVID-19 infection, with adjustments for age, sex, comorbidities and province of residence.

View Article and Find Full Text PDF

The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.

View Article and Find Full Text PDF

Immunization rates of maternal influenza vaccination during pregnancy remain suboptimal, with concerns about potential harm to the mothers and their offspring. We conducted a population-based cohort study, using mother-child linked database in Korea: (a) maternal cohort between December 2019, and March 2022; (b) neonatal cohort between September 2020, and June 2021. Exposure was defined as influenza vaccination during pregnancy.

View Article and Find Full Text PDF

The Development of a One-Step PCR Assay for Rapid Detection of an Attenuated Vaccine Strain of Duck Hepatitis Virus Type 3 in Korea.

Vet Sci

December 2024

Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea.

Duck hepatitis A virus type 3 (DHAV-3) is a viral pathogen that causes acute, high-mortality hepatitis in ducklings, and vaccination with attenuated live vaccines is currently the main preventive measure against it. However, differentiating infected from vaccinated animals (DIVA) is crucial for clinical diagnosis and effective disease control. This study aimed to develop a rapid mismatch amplification mutation assay PCR (MAMA-PCR) diagnostic method to simultaneously detect and differentiate between wild-type and vaccine strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!