Porcine Circovirus 2 (PCV2) vaccines are based on either inactivated whole virion, or recombinant ORF2 capsid protein assembled into Virus-like Particles (VLPs). No data are available about the immunizing properties of free, non-assembled capsid protein. To investigate this issue, ORF2 of a reference PCV2b strain was expressed in a Baculovirus-based expression system without assembly into VLPs. The free purified protein was formulated into an oil vaccine at three distinct Ag payloads: 10.8/3.6/1.2 micrograms/dose. Each dose was injected intramuscularly into five, 37-day old piglets, carefully matched for maternally-derived antibody. Five control piglets were injected with sterile PBS in oil adjuvant. Twenty-eight days later, all the pigs were challenged intranasally with 10 TCID of PCV2b strain DV6503. After challenge infection, all the pigs remained in good clinical conditions. The recombinant vaccine did not induce significant antibody and PCV2-specific IFN-γ responses. ELISPOT and lymphocyte proliferation data confirmed poor induction of cell-mediated immunity. In terms of PCV2 viremia, there was no significant difference between vaccinated and control animals. The histological data indicated the absence of a detectable viral load and of PCVAD lesions in both vaccinated and control animals, as well as of histiocytes and multi-nucleated giant cells. We conclude that free, non-assembled ORF2 capsid protein does not induce protective immunity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466160 | PMC |
http://dx.doi.org/10.3390/pathogens10091161 | DOI Listing |
RSC Adv
January 2025
Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University Yining 835000 China
Molecular dynamics (MD) with the ReaxFF force field is used to study the structural damage to HIV capsid protein and gp120 protein mediated by reactive oxygen species (ROS). Our results show that with an increase in ROS concentration, the structures of the HIV capsid protein and gp120 protein are more severely damaged, including dehydrogenation, increase in oxygen-containing groups, helix shortening or destruction, and peptide bond breaking. In particular, we noticed that extraction of H atoms from N atoms by ROS was significantly higher than that from C atoms.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.
View Article and Find Full Text PDFMol Ther Oncol
December 2024
Department of Gene Therapy, Ulm University, 89081 Ulm, Germany.
Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity.
View Article and Find Full Text PDFNat Med
January 2025
Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4 T cell count.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!