PPy/silane composite film on a magnesium alloy surface was prepared by one-step cycle voltammetry. The mixed solution of methanol and water was used as the hydrolysis solvent of a γ-(2,3-glycidoxypropyl) trimethoxysilane coupling agent (KH-560). The surface morphology of the PPy/silane film, the electro-polymerization progress of KH-560 and PPy, the influence of the silane coupling agent and the corrosion behavior of the coated AZ31 Mg alloy were all investigated. The results indicated that the PPy/silane film on AZ31 Mg alloy via one-step cyclic voltammetry could provide better corrosion protection for an Mg alloy when the volume fraction of KH-560 in the hydrolysis solution was 15% and the time span of hydrolysis was 24 h with the 5.935 × 10 A cm corrosion current density.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472027 | PMC |
http://dx.doi.org/10.3390/polym13183148 | DOI Listing |
Polymers (Basel)
September 2021
College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
PPy/silane composite film on a magnesium alloy surface was prepared by one-step cycle voltammetry. The mixed solution of methanol and water was used as the hydrolysis solvent of a γ-(2,3-glycidoxypropyl) trimethoxysilane coupling agent (KH-560). The surface morphology of the PPy/silane film, the electro-polymerization progress of KH-560 and PPy, the influence of the silane coupling agent and the corrosion behavior of the coated AZ31 Mg alloy were all investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!