This study aimed to develop active paper from rice straw fibers with its function as antibacterial activity obtained from longan () peels. The morphology and mechanical properties of fibers of rice straw were examined as quality parameters for paper production. Rice straw paper (RSP) with basis weight ca 106.42 g/m, 0.34 mm thickness, 34.15% brightness, and 32.26 N·m/g tensile index was successfully prepared from fibers and pulps without chemical bleaching process. Bioactive compounds of longan peels were extracted using maceration technique with a mixture of ethanol-water, and subsequently coated onto RSP at concentration of 10%, 15% and 20% (/). Fourier transform infrared (FTIR) spectroscopic analysis demonstrated the functional groups of phytochemicals in the peel extract. The results of physical properties showed that the coated RSP had similar thickness and tensile index, but had lower brightness compared to control papers. Scanning electron microscopy (SEM) confirmed the significantly different of surface and cross-section structures between coated and uncoated RSP. The coated RSP had relatively greater barrier properties to prevent water absorption. In addition, the RSP coated with longan peel extracts showed significant antibacterial activity against foodborne bacteria, and . This study reveals the benefits of natural byproducts as potential materials for active packaging prepared by environmentally friendly processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470748PMC
http://dx.doi.org/10.3390/polym13183096DOI Listing

Publication Analysis

Top Keywords

rice straw
16
coated rsp
12
straw paper
8
coated longan
8
longan peel
8
peel extract
8
antibacterial activity
8
longan peels
8
rsp coated
8
coated
6

Similar Publications

The impact of straw and biochar on carbon mineralization and the function of carbon cycle genes in paddy soil is important for soil nutrient management and the transformation of carbon pools. This research is based on a five-year field experiment with four treatments: no fertilizer application (CK); chemical fertilizer only (NPK); straw combined with chemical fertilizer (NPKS); and biochar combined with chemical fertilizer (NPKB). By integrating indoor mineralization culture with metagenomic approaches, we analyzed the response of organic carbon mineralization and carbon cycle genes in typical paddy soil from Guizhou Province, China, to different fertilization treatments.

View Article and Find Full Text PDF

Boosting Nutritional Proficiency of Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes): A Selenium and Zinc Fortification Exploration.

Int J Med Mushrooms

January 2025

Department of Plant Pathology, College of Agriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur-176062, India.

The present study was aimed at evaluating the nutritional characteristics of bio-enriched oyster mushrooms. Cereal, leguminous and oilseed waste was used as substrates. Rice, soybean and mustard straw performed the best among all substrate fortified by adding Se and Zn salts individually and in combination at three different doses (25, 50 and 75 mg/kg) for nutrient analysis.

View Article and Find Full Text PDF

Changes in methanogenic performance and microbial community during gradual transition from co-digestion with food waste to mono-digestion of rice straw.

Bioresour Technol

January 2025

Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:

This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.

View Article and Find Full Text PDF

Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil.

J Hazard Mater

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:

Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.

View Article and Find Full Text PDF

The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!