This work aimed at studying the effect of a silica specific surface area (SSA), as determined by the nitrogen adsorption method, on the viscoelastic and fatigue behaviors of silica-filled styrene-butadiene rubber (SBR) composites. In particular, silica fillers with an SSA of 125 m/g, 165 m/g, and 200 m/g were selected. Micro-computed X-ray tomography (µCT) was utilized to analyze the 3D morphology of the fillers within an SBR matrix prior to mechanical testing. It was found with this technique that the volume density of the agglomerates drastically decreased with decreasing silica SSA, indicating an increase in the silica dispersion state. The viscoelastic behavior was evaluated by dynamic mechanical analysis (DMA) and hysteresis loss experiments. The fatigue behavior was studied by cyclic tensile loading until rupture enabled the generation of Wöhler curves. Digital image correlation (DIC) was used to evaluate the volume strain upon deformation, whereas µCT was used to evaluate the volume fraction of the fatigue-induced cracks. Last, scanning electron microscopy (SEM) was used to characterize, in detail, crack mechanisms. The main results indicate that fatigue life increased with decreasing silica SSA, which was also accompanied by a decrease in hysteresis loss and storage modulus. SEM investigations showed that filler-matrix debonding and filler fracture were the mechanisms at the origin of crack initiation. Both the volume fraction of the cracks obtained by µCT and the volume strain acquired from the DIC increased with increasing SSA of silica. The results are discussed based on the prominent role of the filler network on the viscoelastic and fatigue damage behaviors of SBR composites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473133PMC
http://dx.doi.org/10.3390/polym13183094DOI Listing

Publication Analysis

Top Keywords

viscoelastic fatigue
12
sbr composites
12
silica specific
8
specific surface
8
surface area
8
fatigue behaviors
8
behaviors silica-filled
8
decreasing silica
8
silica ssa
8
hysteresis loss
8

Similar Publications

Evaluation of fatigue performance of asphalt materials based on their relaxation behavior.

Sci Rep

January 2025

Shanxi Province Land Engineering Construction Group Co., Ltd, Xian, 710075, China.

Although the fatigue properties of asphalt materials have been extensively studied, the relationship between the rheological properties and road performance of asphalt mixtures remains underexplored. In this study, we have examined the relaxation properties of asphalt binders through relaxation tests conducted on asphalt and its mastic under different conditions. A repeated stress relaxation-recovery test is designed for assessing both the relaxation and elastic properties, and a set of reasonable test parameters is recommended, thereby establishing a novel test method for measuring the relaxation and elastic behaviors of asphalt.

View Article and Find Full Text PDF

Accurately predicting fatigue failure in CFRP laminates requires an understanding of the cyclic behavior of their resin matrix, which plays a crucial role in the materials' overall performance. This study focuses on the temperature elevation during the cyclic loadings of the resin, driven by inelastic deformations that increase the dissipated energy. At low loading frequencies, the dissipated energy is effectively released as heat, preventing significant temperature rise and maintaining a consistent, balanced thermal state.

View Article and Find Full Text PDF

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

Bitumen exhibits viscoelastic properties, showcasing both viscous and elastic behaviors, which are characterized by the phase angle and dynamic modulus. Issues like early fatigue fractures, rutting, and permanent deformations in bituminous asphalt pavements arise due to moisture susceptibility, high-temperature deformation, low-temperature cracking, and overloading. These distresses result in potholes, alligator cracks, and specific deformations that lead to early pavement failure, increasing rehabilitation and maintenance costs.

View Article and Find Full Text PDF

Hierarchically mimicking outer tooth enamel for restorative mechanical compatibility.

Nat Commun

November 2024

School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.

Tooth enamel, and especially the outer tooth enamel, is a load-resistant shell that benefits mastication but is easily damaged, driving the need for enamel-restorative materials with comparable properties to restore the mastication function and protect the teeth. Synthesizing an enamel analog that mimics the components and hierarchical structure of natural tooth enamel is a promising way to achieve these comparable mechanical properties, but it is still challenging to realize. Herein, we fabricate a hierarchical enamel analog with comparable stiffness, hardness, and viscoelasticity as natural enamel by incorporating three hierarchies of outer tooth enamel based on hierarchical assembly of enamel-like hydroxyapatite hybrid nanowires with polyvinyl alcohol as a matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!