In this study, the ballistic performance of armors composed of a polyurea elastomer/Kevlar fabric composite and a shear thickening fluid (STF) structure was investigated. The polyurea used was a reaction product of aromatic diphenylmethane isocyanate (A agent) and amine-terminated polyether resin (B agent). The A and B agents were diluted, mixed and brushed onto Kevlar fabric. After the reaction of A and B agents was complete, the polyurea/Kevlar composite was formed. STF structure was prepared through pouring the STF into a honeycomb paper panel. The ballistic tests were conducted with reference to NIJ 0101.06 Ballistic Test Specification Class II and Class IIIA, using 9 mm FMJ and 44 magnum bullets. The ballistic test results reveal that polyurea/Kevlar fabric composites offer better impact resistance than conventional Kevlar fabrics and a 2 mm STF structure could replace approximately 10 layers of Kevlar in a ballistic resistant layer. Our results also showed that a high-strength composite laminate using the best polyurea/Kevlar plates combined with the STF structure was more than 17% lighter and thinner than the conventional Kevlar laminate, indicating that the high-strength protective material developed in this study is superior to the traditional protective materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8467087PMC
http://dx.doi.org/10.3390/polym13183080DOI Listing

Publication Analysis

Top Keywords

stf structure
16
ballistic performance
8
shear thickening
8
thickening fluid
8
ballistic test
8
conventional kevlar
8
ballistic
5
stf
5
preparation ballistic
4
performance multi-layer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!