Experimental Study on Angular Flexural Performance of Multiaxis Three Dimensional (3D) Polymeric Carbon Fiber/Cementitious Concretes.

Polymers (Basel)

Nano/Micro Fiber Preform Design and Composite Laboratory, Department of Textile Engineering, Faculty of Engineering, Erciyes University, Talas-Kayseri 38039, Turkey.

Published: September 2021

Multiaxis three-dimensional (3D) continuous polymeric carbon fiber/cementitious concretes were introduced. Their angular (off-axis) flexural properties were experimentally studied. It was found that the placement of the continuous carbon fibers and their in-plane angular orientations in the pristine concrete noticeably influenced the angular flexural strength and the energy absorption behavior of the multiaxis 3D concrete composite. The off-axis flexural strength of the uniaxial (C-1D-(0°)), biaxial (C-2D-(0°), and C-2D-(90°)), and multiaxial (C-4D-(0°), C-4D-(+45°) and C-4D-(-45°)) concrete composites were outstandingly higher (from 36.84 to 272.43%) than the neat concrete. Their energy absorption capacities were superior compared to the neat concrete. Fractured four directional polymeric carbon fiber/cementitious matrix concretes limited brittle matrix failure and a broom-like fracture phenomenon on the filament bundles, filament-matrix debonding and splitting, and minor filament entanglement. Multiaxis 3D polymeric carbon fiber concrete, especially the C-4D structure, controlled the crack phenomena and was considered a damage-tolerant material compared to the neat concrete.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473331PMC
http://dx.doi.org/10.3390/polym13183073DOI Listing

Publication Analysis

Top Keywords

polymeric carbon
16
carbon fiber/cementitious
12
neat concrete
12
angular flexural
8
fiber/cementitious concretes
8
off-axis flexural
8
flexural strength
8
energy absorption
8
compared neat
8
concrete
7

Similar Publications

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Enhancement of mechanical properties in reactive polyurethane film via in-situ assembly of embedded cellulose nanocrystals.

Int J Biol Macromol

January 2025

Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:

Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.

View Article and Find Full Text PDF

Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems.

Water Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.

View Article and Find Full Text PDF

In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!